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Abstract

We study distributed algorithms for three graph-theoretic problems in weighted trees and weighted

planar graphs. For trees, we present an efficient deterministic distributed algorithm which finds an

almost exact approximation of a maximum-weight matching. In addition, in the case of trees, we

show how to approximately solve the minimum-weight dominating set problem. For planar graphs,

we present an almost exact approximation for the maximum-weight independent set problem.

1 Introduction

We consider a distributed model of computations introduced by Linial in [L92]. In this model, a network
is represented by an undirected graph, each vertex of the graph corresponds to a processor, and an edge
corresponds to a connection between processors. The network is synchronized and computations proceed
in rounds. In a single round vertices can send messages to their neighbors, can receive messages from
their neighbors, and can perform some local computations. Neither the amount of local computations nor
the lengths of messages are restricted in any way. In such a distributed network, objective of processors
is to compute some global function (for example a maximum independent set) of the underlying graph.
In a connected graph on n vertices any function of the graph can be computed in O(n) rounds and the
goal is to do it much faster. Usually a distributed algorithm is considered efficient if its running time is
poly-logarithmic in n. Distributed model of computations is entirely different than a massively parallel
PRAM model. In the latter one processors have access to a shared memory and can use this means
to communicate with each other. As a result communication between processors in the parallel model
of computations is not restricted in any way. In contrast, in the distributed model of computations
it is the underlying graph which restricts the communication. In this graph vertices are confined to
the local subgraphs, as a vertex v can learn only a subgraph of radius polylog(n) around v in a poly-
logarithmic number of rounds. Based on that local information a global function of the underlying graph
is determined. In addition, we assume that an underlying graph is weighted, with nonnegative weights
defined either on the vertex set or the edge set. Although weights impact significantly a strategy taken
to design algorithms for our problems, they do not influence the communication model.

In this paper, we will focus on two types of network topologies: trees and planar graphs. Both are
classical families of graphs that appear in many different situations. Trees are the most basic topologies
in graph theory and understanding distributed complexity for this class of graphs seems to be necessary
to hope for a further progress. The class of planar graphs is a natural generalization. In addition trees
can appear as spanning subgraphs of networks with arbitrary topology as solving some problems in
a spanning tree immediately gives a feasible solution in the network. We will consider three classical
problems in graph theory. In the case when a network is a tree we will discuss algorithms for two
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mhanckow@main.amu.edu.pl.

1



problems. For trees with weights on edges we will study the Maximum-Weight Matching problem and
for trees with weights on vertices we will consider the Minimum-Weight Dominating Set problem. In
the Maximum-Weight Matching problem we want to find a matching of total weight which is the largest
possible. In the Minimum-Weight Dominating Set problem the objective is to find a dominating set
such that the sum of weights on vertices of the set is the smallest possible. Both problems have many
natural applications. For example, the Minimum-Weight Dominating Set problem can arise naturally in
a distributed network when considering a problem of nearly optimal placement of servers in a network.

Our first algorithm approximates a maximum-weight matching in a tree. Note that finding the exact
maximum is unfeasible for a distributed algorithm even in very simple cases as to find a maximum
matching in an unweighted path on n vertices, Ω(n) rounds are required as proved by Linial in [L92].
Consequently recent research has focused on designing distributed approximation algorithms (see an
excellent survey of Elkin [E04] on distributed approximation algorithms). It is interesting to note that
the state of knowledge in the case of randomized distributed algorithms and deterministic distributed
algorithms is far apart. In fact it is even not known if the maximal independent set problem admits an
efficient deterministic distributed algorithm yet simple randomized algorithms for the problem are known.
Let ω∗ denote the weight of a maximum-weight matching. In [WW04] two randomized distributed
approximations are given for the matching problem. For weighted trees, M. Wattenhofer, R. Wattenhofer
([WW04]) gave a O(1)-time randomized algorithm which finds with high probability a matching M of
weight Ω(ω∗). In addition, [WW04] contains a randomized algorithm which in an arbitrary graph finds in
O(log2 n) rounds a matching M which with high probability has weight Ω(ω∗). In the case of unweighted
graphs much more is known. When a graph is bipartite then a matching M with (1 − ǫ)ω∗ edges can

be found in O(log1/ǫ n) rounds ([CH03]) and in the case of general graphs, a 2/3-approximation can be
found in the poly-logarithmic number of rounds ([CHS04],[CHSz04]). Both of these algorithms however
are based on the augmenting paths technique which can be applied only to the unweighted version of
the problem. In the case of a dominating set, [JRS02] gives an efficient O(log n log ∆)-time randomized
algorithm which finds a matching of the expected ratio of O(log ∆) where ∆ is the maximum degree in
the graph. In the unweighted case, a recent paper of Kuhn and Wattenhofer [KW03] uses a distributed
linear programming approach to find a dominating set of the expected ratio of k∆2/k log ∆ in O(k2)
rounds. On the deterministic side, in [KP95], Kutten and Peleg showed how to find a k-dominating set
(every vertex is within distance k of the set) of size n/(k + 1) in O(k log∗ n) rounds in general graphs.
Curiously, the approach from [KP95] is based on finding first a k-dominating set in a tree. The algorithm
for trees is further used to design an algorithm which finds a k-dominating set in general graphs.

In this paper, we present two deterministic algorithms for trees. The first one finds a matching
M of weight which is at least (1 − O(1/ log n))ω∗ in a tree on n vertices. The algorithm runs in the
number of rounds which is polylog(n) but assumes that the value of the maximum weight is known to
vertices in the graph. The second algorithm for trees approximates the minimum-weight dominating set
provided a certain global parameter L of a tree is known to all nodes in the network. The algorithm
finds a dominating set D such that ω(D) ≤ (1 + O(1/ log n))ω∗ where ω∗ is the weight of an optimal
solution. Again the running time of the algorithm is poly-logarithmic in the number of vertices. The
approach to both problems is based on clustering. In fact, our main auxiliary algorithm can be regarded
as a weighted analog of the ruling-forest clustering from [AGLP89]. However, to approach weighted
problems, our clusters must satisfy a few additional properties. Our third algorithm gives an almost
exact approximation of the Maximum-Weight Independent Set problem in planar graphs. In this problem,
given a graph with weights on vertices, we want to find an independent set such that the sum of weights
is the largest possible. We present a deterministic algorithm which in a planar graph on n vertices
finds an independent set weight of which is at least (1 − O(1/ log n))ω∗ where ω∗ is the optimum. The
algorithm runs in a poly-logarithmic number of rounds and uses a different clustering procedure. Again
finding the exact maximum even in the case of unweighted paths requires Ω(n) rounds. In the case of
general graphs, efficient deterministic algorithms even for the maximal independent set problem are not
known.

The rest of the paper is organized as follows. In the next section, we present algorithms for trees. The
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section is divided into two parts, in the first part we present the clustering algorithm and in the second,
we show how to apply the algorithm to matchings and dominating sets. In the last section, we present
an algorithm for the independent set problem in planar graphs. Again the discussion is divided into two
subsections. First we mention some easy auxiliary facts and then we present the main algorithm.

2 Trees

In this section, we will discuss algorithms for trees. We will give an almost exact approximation for the
maximum-weight matching problem and for the minimum-weight dominating set problem. Algorithms
for both problems are based on clustering and our first objective will be to give an efficient distributed
algorithm which finds a clustering of a tree such that clusters have poly-logarithmic diameter and the total
weight of edges connecting different clusters is small. In Section 2.1 we present the clustering algorithm-
procedure HeavyRulingForest. The algorithm is used in Section 2.2 in WMatchinginTree to find
a matching and in WDSinTree to find a dominating set.

2.1 Clustering algorithm

In this section, we will present a clustering algorithm. The main procedure of this section, HeavyRul-

ingForest, finds a clustering of a weighted tree T = (V, E, ω) on n vertices which has two properties:

• Diameter of each cluster is polylog(n) (Lemma 2.4).

• If there is an edge of weight ω connecting two clusters X1 and X2 then each Xi contains a path of
length Ω(log n) such that each edge on the path has weight at least ω/2 (Lemma 2.5).

The second property implies that the total weight of edges connecting different clusters is O(W/ log n)
where W =

∑

e∈E ω(e). In the case of unweighted trees a similar effect can be accomplished by invoking
a ruling forest procedure of Awerbuch et al. [AGLP89]. However the fact that a graph is weighted
adds complexity to the problem and a slightly different strategy must be pursued. Finding clusters in
T is divided into three procedures: LargeIndependentSet, ModifyClusterSet, and HeavyRul-

ingForest. We will give a general idea of the clustering algorithm by starting with the main (and
the last) procedure HeavyRulingForest. Let ωmax denote the maximum weight of an edge, i.e.
ωmax = maxe∈E ω(e). Procedure HeavyRulingForest starts with a clustering into singletons and
in the ith iteration edges with weights from the interval (ωmax/2i+1, ωmax/2i] are considered and new
clusters are formed. For example, suppose that there are only two weights in T , ωmin and ωmax with
2ωmin < ωmax. Then in the first iteration of HeavyRulingForest, edges of weight ωmax are con-
sidered and clusters with these edges are formed in a sub-tree of T . Next the edges of weight ωmin

are exposed, old clusters are enlarged, and possibly new clusters are formed. As a result either large
clusters are obtained in the first iteration and so the weight of each edge in these clusters is ωmax, or the
clusters are enlarged in the second iteration. If an edge of weight ωmax connects two different clusters
after the first iterations then these clusters have ”large” diameter and they will not be enlarged in the
second iteration. In the case clusters are enlarged in the second iteration, edges connecting different
clusters after the second iteration have the weight of ωmin and the second property of clustering follows
from the lower bound for the diameter of a cluster. Clearly the main problem which must be addressed
in the algorithm is how to incorporate new edges into old clusters. This is accomplished by Modify-

ClusterSet which assumes that a set of old clusters is provided and two graphs: G of old edges and
H of new edges on the same vertex set are given. The algorithm considers the cluster graph with the
vertex set equal to the set of old clusters and an edges between two clusters coming from H . Note that
G ∪ H is a forest and a cluster induces a connected subgraph of G ∪ H . As a result the cluster graph
is a forest as well and there is at most one edge in H connecting vertices from two different clusters.
ModifyClusterSet creates new clusters from the old ones by first finding a set of vertex-disjoint stars
in the cluster graph. The process is then iterated so that all edges from H are examined. Consider one
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such star {D, C1, C2, . . . , Ck} around D. First the algorithm checks if every vertex from Ci is within a
short distance of D. If it is the case then vertices from Ci are added to D and a new enlarged cluster
is created. This one-sided (from Ci’s to D) verification is however not enough as it can happen that
Ci is simply a large cluster and so it is not the case that all vertices from Ci are close to a possibly
small cluster (maybe even a single vertex cluster) D. Consequently in the next step, we check if the new
cluster obtained from D is within small distance (in the same sense as above) to any of the Ci’s which
were not added to D. If it is the case then new D is added to any such Ci. Now suppose that Ci and D
are not incorporated into a new cluster. Then there is a vertex in Ci which is far from D and there is a
vertex in D which is far from Ci. It is then easy to see that diameters of both Ci and D must be large
in this iteration. The final piece of the algorithm is to find a large set of vertex-disjoint stars. This is
done by an easy procedure LargeIndependentSet which finds a large (constant fraction of vertices)
independent set in a cluster graph.

We will now fix some notation and terminology. A cluster in a graph G = (V, E) is a connected
induced subgraph of G. We will often identify clusters with sets of vertices that induce them and so if
G[X ] is a connected subgraph induced by X , then X will also be called a cluster in G.

Let G = (V, E, ω) be a graph with ω : E → R+. All of the metric properties of G are defined ignoring
ω and so the length of a path connecting two vertices of G is the number of edges in the path. If v, u ∈ V
then distG(v, u) is the length of a shortest path connecting v with u and for v ∈ V , U ⊆ V ,

distG(v, U) = min
u∈U

distG(v, u).

In addition, for U ⊆ V let diamG(U) be the largest distance (in G) between any two vertices from U ,
i.e.

diamG(U) = max
u,v∈U

distG(u, v).

Finally for v ∈ V , degG(v) is the number of edges incident to v (we will often drop the subscript in
degG(v) if G is clear from the context).

We note an easy lemma.

Lemma 2.1 Let G = (V, E) be a forest and let A = {v ∈ V |deg(v) ≤ 2}. Then |A| ≥ |V |/2.

Proof. Note that adding edges to G can only decrease |A| and so we can assume that G does not have
isolated vertices. Suppose that |A| < |V |/2. Then

∑

v∈V

deg(v) ≥ 3(|V | − |A|) + |A| > 2|V |

which contradicts the fact that |E| ≤ |V | − 1. �

As explained above the most basic component of our algorithm is an easy procedure that finds a
large independent set in a forest.

LargeIndependentSet

Input: Forest F .
Output: An independent set I such that |I| = Ω(|V (F )|).

1. Each vertex v such that deg(v) ≤ 2 is added to A.

2. Find a maximal independent set I in subgraph of F induced by A using the Cole-Vishkin procedure
[CV86].

3. Return I.
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Note that the Cole-Vishkin procedure from [CV86] finds an maximal independent set in a graph on n
vertices with constant maximum degree in O(log∗ n) rounds. Since each connected component of F [A] is
a path, |I| ≥ |A|/3 ≥ |V |/6. The main clustering procedure iterates over ranges of weights and exposes
edges that have weights in a given range. When new edges are exposed a modification procedure is
invoked which glues together clusters which have ”small” diameter. The algorithm takes the following
arguments: graph G , graph H on the same vertex set with property that G ∪ H is a forest, and the
set of clusters C in G. There are O(log n) main iterations in the procedure. In each iteration, first a
large independent set I is found in the subgraph Aux of the cluster graph which contains non-isolated
vertices, second the set of stars is obtained by selecting one edge incident to each vertex from I, finally
the clusters in each star are connected to form a larger cluster if their diameters are small (steps 2(e)
and 2(f)).

ModifyClusterSet

Input: Graphs G and H on the same vertex set; G ∪ H is a forest. Set C of clusters in G. Integer K.
Output: Set of cluster C̄ in G ∪ H .

1. Consider the cluster graph with vertex set C and two clusters connected if there is an edge in H
connecting a vertex from one cluster to a vertex in another. The cluster graph is a forest. Let Aux
be the subgraph of the cluster graph induced by clusters of degree at least one.

2. Iterate O(log n) times:

(a) Call LargeIndependentSet in Aux to find an independent set I in Aux with properties:
|I| = Ω(|V (Aux)|) and

∀C∈I1 ≤ degAux(C) ≤ 2.

(b) W := V (Aux) \ I.

(c) For each C ∈ I, in parallel, select one edge eC incident to C and let DC ∈ W denote the
second endpoint of eC . The edge eC is called a special edge. Note that the graph induced by
{eC |C ∈ I} is a set of stars around the vertices from {DC |C ∈ I} and recall that DC and C
are vertices in the auxiliary graph which correspond to sets of vertices (clusters) in G ∪ H .

(d) For every C ∈ I, in parallel, if

∀w∈CdistG∪H(w, DC) ≤ K (1)

then add all vertices from cluster C to cluster DC and delete C from I.

(e) Let D̄ := DC and so D̄ is the set of all vertices which were in the original DC in step 2(c)
and vertices added to DC in step 2(d).

(f) Let {D̄i} denote the set of clusters created in 2(e). For every D̄i in parallel, if there exists a
cluster C ∈ I (not deleted in 2(d)) such that DC ⊆ D̄i and

∀w∈D̄i
distG∪H(w, C) ≤ K (2)

then add all vertices from the cluster D̄i to the cluster C. Let C̄ denote the cluster obtained
from C.

(g) Modify C as follows. Let C̄ consists of all new clusters and all unmodified clusters from C.

(h) Modify Aux: V (Aux) contains clusters from C̄ of degree at least one. In addition, if there
exists a special edge connecting two clusters from C̄ then delete the edge from Aux.

3. Return C̄.
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Figure 1: Modifying clusters in a tree

We now proceed with the analysis of ModifyClusterSet. First we will prove that the diameter of
new clusters can increase by an additive factor of O(K log n). In the second lemma we will show that
if G ∪ H contains connected components of large diameter than clusters contained in these components
must have a large diameter as well.

Lemma 2.2 Let P = maxX∈C diamG(X). Then the set of clusters C̄ obtained by ModifyClusterSet

has the property
max
X̄∈C̄

diamG∪H(X̄) ≤ P + O(K log n).

Proof. There are O(log n) iterations of step 2 in ModifyClusterSet and so it is enough to prove
that in each iteration the diameter of a cluster can increase by an additive factor of O(K). To that end,
let C, C′ be two cluster from I such that DC = DC′ and suppose that both C and C′ are added to D̄ in
step 2(d). Then, by (1), for v ∈ C, v′ ∈ C′,

distG∪H(v, v′) ≤ 2K + diamG(DC).

Consequently, the diameter of DC increases by O(K). Similarly, suppose that D̄ is added to cluster C
in step 2(f). By (2), if v ∈ D̄ ∪ C and w ∈ D̄ ∪ C then

distG∪H(v, w) ≤ 2K + diamG(C).

Therefore the diameter of C increases by O(K). �

Lemma 2.3 Let C̄ be the set of clusters in G∪H obtained by ModifyClusterSet. If Q is a connected
component in G ∪ H then for every cluster X ∈ C̄ with X ⊆ V (Q),

diamG∪H(X) ≥ min{K, diamG∪H(Q)}.
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Figure 2: New clusters after modification

Proof. Let X, Y be two clusters in Q such that there is an edge e connecting X and Y . First observe
that an edge from H will be deleted from the auxiliary graph during the execution of the algorithm
(step 2(h)) only if it is a special edge in some iteration i. In addition the number of special edges in an
iteration is equal to the constant fraction of the edges from Aux. Therefore after O(log n) iterations of
step 2, Aux will be an empty graph. Consequently, the edge e was special in some iteration of step 2.
Let C and DC denote two clusters in iteration i such that e = {C, DC}. We can assume that C ⊆ X
and DC ⊆ Y . Since C was not added to DC in step 2(d), condition (1) was not satisfied and so for
some w ∈ C, distG∪H(w, DC) > K. Since e connects C with DC , this implies that diamG∪H(C) ≥ K.
Consequently, diamG∪H(X) ≥ K. Now let D̄ denote the cluster obtained from DC by possibly adding
vertices in step 2(d). There are two possibilities:

1. D̄ was added to some cluster C̄ in the step 2(f) or

2. condition (2) was not satisfied for any C with DC ⊆ D̄ and D̄ was left intact.

In the first case, both D̄ and C̄ are subsets of Y and DC̄ = DC . In addition, C̄ was not added to D̄
in step 2(d). Then however, by the above argument, diamG∪H(C̄) ≥ K and so diamG∪H(Y ) ≥ K.
In the second case, there exists a w ∈ D̄ such that distG∪H(w, C) > K and so diamG∪H(D̄) ≥ K.
Consequently, diamG∪H(Y ) ≥ K. �

We can now describe the main procedure which finds clusters in a weighted tree. The clusters have
two properties that we indicated before: The diameter of a cluster is polylog(n) (Lemma 2.4) and for
every edge e connecting two different clusters X and Y , the weight of e is much smaller than the total
weight of edges in X and much smaller than the total weight of edges in Y (Lemma 2.5).

HeavyRulingForest

Input: Weighted tree F with maximum weight ωmax.
Output: Set of cluster C.

1. Let i := 0 and G := ∅.
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2. For a vertex v, let Cv := {v}. Let C :=
⋃

v{Cv}.

3. While i ≤ 2 logn do:

(a) H := {e ∈ F |ω(e) ∈ (ωmax/2i+1, ωmax/2i]}

(b) Invoke ModifyClusterSet with G, H, C and K = log n.

(c) Let C′ denote the obtained set of clusters.

(d) G := G ∪ H , C := C′, i := i + 1.

4. Return C.

We summarize the properties of clusters obtained by HeavyRulingForest in the next two lemmas.

Lemma 2.4 For every cluster X obtained from HeavyRulingForest,

diamF (X) = O(log3 n).

Proof. There are O(log n) iterations of the while loop in step 3. By Lemma 2.2 in each iteration the
diameter of a cluster can increase by an additive factor of O(log2 n). Consequently the diameter of a
cluster is O(log3 n). �

Lemma 2.5 Let X1, X2 be two clusters in the set of clusters obtained by HeavyRulingForest. If
there is an edge connecting X1 with X2 of weight ω then each of Xi’s (i = 1, 2) contains a path of length
log n such that every edge on the path has the weight at least ω/2.

Proof. Let e denote the edge connecting X1 and X2. Assume that the weight of e is ω and ω ∈
(ωmax/2i+1, ωmax/2i]. Then e was an edge of H in the ith iteration of HeavyRulingForest. Since e
connects X1 and X2 after all iterations it had to connect two clusters X ′

1 and X ′
2 in the ith iteration.

Then however, by Lemma 2.3, diamG∪H(X ′
1) and diamG∪H(X ′

2) are at least log n. Since X ′
1, X

′
2 induce

connected subgraphs of F , diamG∪H(X ′
i) = diamF (X ′

i). In addition, all edges in graphs X ′
1 and X ′

2 have
weights which are at least ω/2 as only such edges where considered in iterations up to i. Consequently
Xi contains a path of length log n with each edge of weight ω/2. �

2.2 Applications

In this section, we will show how to use HeavyRulingForest clustering procedure to approximate a
maximum-weight matching and a minimum-weight dominating set in trees. Note that HeavyRuling-

Forest is general enough to handle other problems. For example, we can obtain similar approximations
for the maximum-weight independent set problem (this of course also follows from the result in the next
section) or the maximum-cut problem. Our first algorithm will approximate a maximum-weight match-
ing. Let F = (V, E, ω) be a weighted tree on n vertices with ω : E → R+ and let ωmax denote the
maximum weight. The idea of the algorithms is very basic. First find a clustering using HeavyRul-

ingForest. Disregard edges connecting different clusters and as each cluster has a poly-logarithmic
diameter find in each cluster a matching of the maximum weight. Finally return the union of these
matchings.

WMatchinginTree

Input: Weighted tree F with maximum weight of an edge ωmax.
Output: Weighted matching M .

1. If e has weight ω(e) < ωmax/n2 then let ω(e) := ωmax/n2. Let T denote the tree with new weights.

2. Use HeavyRulingForest to find the set of clusters C in T.
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3. In each cluster X from C find a maximum weighted matching MX .

4. Return M :=
⋃

X∈C MX .

Theorem 2.6 Let F be a weighted tree on n vertices, let ω∗ denote the weight of a maximum-weight
matching in F . Then WMatchinginTree finds a matching M such that

ω(M) ≥ (1 − O(1/ log n))ω∗.

The algorithm runs in polylog(n) rounds.

Proof. For a subset M ⊆ E(F ), let ωT (M) (ωF (M)) denote the weight of M in T (in F ). In addition
let ω∗

F = ω∗ and ω∗
T be the weight of the maximum-weight matching in T . We have

ωT (M) ≤ ωF (M) +
ωmax

n

and of course
ωT (M) ≥ ωF (M).

Let C denote the set of clusters in T returned by HeavyRulingForest. Consider the cluster graph
TC with clusters from C. Then TC is a tree. Note that edges in TC correspond in a unique way to edges in
T and we will treat them as both. We claim that for each edge e in the cluster graph TC there is a unique
cluster Ce ∈ C such that the weight of e is smaller than O(ω(MCe

)/logn) where MCe
is the matching

computed locally in Ce in step 3. Indeed , select a root R in TC arbitrarily and give an orientation to
edges to create a directed tree with root R so that every vertex in TC but R has exactly one arc leaving
it. Then for each cluster X from C different than R there is exactly one edge eX that starts at X . By
Lemma 2.5, there is a path in X of length at least log n such that each edge on this path has weight at
least ω(eX)/2. Consequently, the weight of the maximum weighted matching in X is at least log n

6 ω(eX).
Let T̄ denote the subgraph of T obtained by deleting all edges that connect different clusters from C.
Then WMatchinginTree finds a maximum-weight matching M in T̄ . Let ω∗

T (X) denote the weight
of a maximum-weight matching in cluster X in T . We have

ω∗
T ≤

∑

X∈C

[ω∗
T (X) + ω(eX)] ≤

(

1 +
6

log n

)

∑

X∈C

ω∗
T (X) =

(

1 +
6

log n

)

ωT (M),

and so

ωT (M) ≥

(

1 −
6

log n

)

ω∗
T ≥

(

1 −
6

log n

)

ω∗
F .

Consequently,

ωF (M) ≥ ωT (M) −
ωmax

n
≥

(

1 −
6

log n

)

ω∗
F −

ωmax

n
≥

(

1 −
7

log n

)

ω∗
F

as ω∗
F ≥ ωmax. �

We will now turn the attention to the Minimum-Weight Dominating Set Problem. Recall that if
G = (V, E) is an unweighted graph then a dominating set in G is a subset D ⊆ V such that for every
vertex v in V either v is in D or a neighbor of v is in D. Minimum Dominating Set is a dominating set
of the smallest size. We will be interested in the weighted version of the problem. Let G = (V, E, ω)
where ω : V → R+. For a subset D ⊆ V , we set ω(D) :=

∑

v∈D ω(v). A minimum-weight dominating
set in G is a dominating set D in (V, E) such that ω(D) is the smallest possible.

The main idea of the dominating set algorithm is similar to the maximum matching procedure. This
time however the weights are defined on vertices and the first task of the procedure is to carefully define
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Figure 3: Modifying clusters in WDSinTree

the weights on edges. Once this is done the algorithm finds a clustering using HeavyRulingForest

procedure. Vertices from a cluster C can be dominated either by vertices from C or the vertices from
clusters which are connected to C in the cluster graph. Therefore we must enlarge C and include some
vertices from other clusters. This again must be done carefully so that enlarged clusters contain only
vertices which are ”useful” in dominating C. Finally the union of all locally found dominating sets
is returned. We will however need one more assumption about tree F . Let N [v] denote the closed
neighborhood of v, i.e. N [v] = N(v) ∪ {v}, let

L(v) = min
u∈N [v]

ω(u),

and
L = max

v∈V (F )
L(v).

We shall assume that L is globally known. Clearly L(v) measures how much weight is needed to dominate
vertex v and L is related to the weight of a minimum-weight dominating set. In particular, if ω∗ denotes
the weight of a minimum-weight dominating set then L ≤ ω∗ ≤ nL. The weights on edges are defined it
terms of L, specifically the weight of {u, v} is equal to max{L(u), L(v)}. Note that the sum of weights of
edges connecting cluster C with different cluster bounds from above the weight of vertices added when
enlarging C in step 4 of procedure WDSinTree.

WDSinTree

Input: Tree F with weights ω : V (F ) → R+, L where L = maxv∈V (F ) L(v).
Output: Dominating set D.

1. For each vertex v ∈ V (F ) in parallel:
If ω(v) < L/n2 then set ω(v) := L/n2. Otherwise do not change ω(v). Let T denote the tree with
changed weights.

2. For each edge {u, v} in T , let
ω̄(u, v) := max{L(u), L(v)}.

Let T ′ denote graph with weights on edges.

3. Use HeavyRulingForest (with L as the maximum weight) to find the set of clusters C in T ′.

4. For each cluster X ∈ C, in parallel:
Let EX denote the set of edges in T ′ which have exactly one endpoint in X . For any edge e ∈ EX

if e = {x, y} with x ∈ X then let ze be a vertex in N [x] with ω(ze) = L(x). Let X ′ :=
⋃

e∈EX
{ze}

and X̄ := X ∪ X ′.
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5. In each cluster X̄ find a dominating set D(X̄) of the minimum weight.

6. Return
⋃

X D(X̄).

Before we analyze the procedure in more details let us immediately remark that clusters X̄ obtained
in step 3 have the diameter of at most diamF (X)+2 and so the diameter of each X̄ will be O(log3 n) by
Lemma 2.4. In addition, note that if the value of L is not known precisely but instead an upper bound
U for L is known and the weights are positive integers then an easy modification of the algorithm will
run in O(log Upolylog(n)). Indeed, simply make HeavyMatching iterate O(log U) times with U as a
maximum so that all edges will be exposed in the process.

First we observe the following property of connecting edges.

Lemma 2.7 Let e ∈ EX . Then

ω̄(e) = O

(

ω(D(X̄))

log n

)

.

Proof. Let ω̄ = ω̄(e). By Lemma 2.5, X contains a path P = v1, . . . , vk of length log n such that
ω̄(vi, vi+1) ≥ ω̄/2. By definition of ω̄, at least Ω(k) vertices w on the path have L(w) ≥ ω̄/2. Let V ′

be the set of such vertices. As the graph is a tree a vertex can dominate at most three vertices from
V ′. As a result the weight of any set which dominates P is Ω(kω̄). In addition for any set S which
dominates P there is a set T ⊂ X̄ which dominates P and such that ω(T ) ≤ ω(S). Indeed, suppose
that s ∈ S dominates a vertex v in P and s is not in X̄. Then s is not on the path and so it dominates
a unique vertex from P . Moreover there exists a vertex w ∈ X̄ which is a neighbor of v and such that
ω(w) ≤ ω(s). We can delete s from S and add w.

Therefore a set of minimum weight which dominates P has weight Ω(kω̄) and is contained in X̄.
Consequently ω(D(X̄)) = Ω(kω̄) = Ω(log nω̄). �

Lemma 2.7 immediately gives the following corollary.

Corollary 2.8 Let W =
∑

X∈C ω(D(X̄)). Then
∑

ω̄(e) = O(W/ log n)

where the sum is taken over all edges e which connect different clusters from C.

Our next lemma shows that the restriction of the minimum-weight dominating set D∗ to a cluster X
and the dominating set D(X̄) found locally in the enlarged cluster X̄ differ in weight which is equal to
the sum of weight of edges connecting X to other clusters.

Lemma 2.9 Let D∗ be a dominating set of the minimum weight in T . Then

ω(D(X̄)) ≤ ω(X ∩ D∗) +
∑

e∈EX

ω̄(e).

Proof. First observe that (X ∩ D∗) ∪ X ′ is a dominating set in X̄ . Indeed, suppose that there is a
vertex v in X such that v is dominated by v∗ ∈ D∗ and v∗ is not in X . Then v∗ is an element of a
different (than X) cluster from C. Then however {v, v∗} ∈ EX and so, by definition of X ′, there is a
vertex v′ ∈ X ′ such that v is a neighbor of v′. Since D(X̄) is a dominating set of the minimum weight
in X̄, we have

ω(D(X̄)) ≤ ω((X ∩ D∗) ∪ X ′) ≤ ω(X ∩ D∗) + ω(X ′).

Recall that in the third step of the algorithm we add a vertex x′ to X ′ if x′ = ze for some e ∈ EX . As a
result ω(x′) ≤ ω̄(e) and so

ω(D(X̄)) ≤ ω(X ∩ D∗) +
∑

e∈EX

ω̄(e).

�

Finally, we can summarize WDSinTree in the next theorem.
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Theorem 2.10 Let F be a weighted tree and let ω∗ denote the weight of a minimum-weight dominating
set in F . Algorithm WDSinTree finds in polylog(n) rounds a dominating set D in F such that

ω(D) ≤ (1 + O(1/ log n))ω∗.

Proof. Let A be a set of vertices and let ωF (A) (ωT (A)) denote the weight of A in F (in T ). Let DT

be a dominating set of the minimum weight in T . Recall that L = maxv∈V (F ) L(v) and observe that
L ≤ ω∗. First note that if DF is a dominating set of the minimum weight in F then

ωT (DF ) ≤ ωF (DF ) + L/n = ω∗ + L/n ≤ (1 + 1/n)ω∗

where the first inequality follows from the fact that we increase a weight of a vertex by at most L/n2

when creating T . Consequently, as DF is a dominating set in T as well, we have ωT (DT ) ≤ ωT (DF ) ≤
(1 + 1/n)ω∗.

Let W =
∑

X∈C ωT (D(X̄)). By Lemma 2.9, we have

W ≤
∑

X∈C

[

ωT (X ∩ DT ) +
∑

e∈EX

ω̄(e)
]

= ωT (DT ) + 2
∑

e∈
S

X
EX

ω̄(e)

which by Corollary 2.8 is at most
ωT (DT ) + O(W/ log n).

As a result W ≤ (1 + O(1/ log n))ωT (DT ). Finally, as D =
⋃

X∈C D(X̄)

ω(D) = ωF (D) ≤ ωT (D) ≤ W ≤

(

1 +
O(1)

log n

)

ωT (DT ) ≤

≤

(

1 +
O(1)

log n

) (

1 +
1

n

)

ω∗ ≤

(

1 +
O(1)

log n

)

ω∗.

�

3 Planar graphs

We will present an algorithm which approximates maximum-weight independent set in planar graphs.
The algorithm is again based on a clustering procedure. We first discuss some preliminary facts in
Section 3.1 and then in Section 3.2 we first give procedure Clustering which finds a set of clusters
in a planar graph and then present WISinPlanar which finds an almost exact approximation of a
maximum-weight independent set in planar graphs.

3.1 Preliminaries

Our algorithm again uses an auxiliary clustering procedure. This time however, the clustering is less
powerful than the clustering from previous section (in particular it does not give a lower bound for the
diameter of each cluster) and it is much less clear which problems can be attacked using this method.
In fact, at the moment, we had success only with applying it to the maximum-weight independent set
problem.

We first introduce necessary notation and state some simple auxiliary facts. Let G = (V, E, ω) be
a graph with weight function ω : V → R+. For a subset A ⊆ V , let ω(A) =

∑

v∈A ω(v). Similarly, if
G = (V, E, ω) is a graph with weight function ω : E → R+ then for F ⊆ E, ω(F ) =

∑

e∈F ω(e). We will
need the following easy fact about distribution of degrees in a planar graph.

Lemma 3.1 Let G be a planar graph on n vertices and let A = {v ∈ V (G)|deg(v) ≤ 6}. Then |A| > n/6.

12



Proof. Note that adding edges to G can only decrease |A| and so we can assume that G does not have
isolated vertices. Suppose that |A| ≤ n/6. Then

∑

v∈V

deg(v) ≥ 7(n − |A|) + |A| ≥ 6n

which contradicts the fact that |E| ≤ 3n − 6. �

A low-degree decomposition of a planar graph G = (V, E) is a partition of V into K independent sets
V1, . . . , VK which satisfies the following conditions:

1. K = O(log |V |).

2. For every i = 1, . . . , K − 1, if v ∈ Vi then v has at most six neighbors in
⋃K

l=i+1 Vl.

Clearly the existence of such a decomposition of a planar graph follows immediately from Lemma 3.1.
In addition, a low-degree decomposition can be found by a distributed algorithm.

Decomposition

Input: Planar graph G on n vertices.
Output: Low-degree decomposition V1, . . . , VK of G.

1. For i := 1 to O(log n) do:

(a) Let A be the set of vertices in G of degree at most 6.

(b) Use the Cole-Vishkin algorithm from [CV86] to find a maximal independent set I in the graph
induced by A.

(c) Vi := I.

(d) Delete all vertices in I from G.

We will invoke Decomposition repeatedly in our main algorithm.

3.2 Algorithm

We will now present the algorithm for approximating maximum-weight independent set in planar graphs.
The algorithm is divided into three procedures: Transformation, Clustering, and WISinPlanar.
The first procedure takes a planar graph G with weights on vertices and finds an edge-weight function
to obtain Ḡ. The second procedure finds clusters in the modified graph Ḡ. Clusters have the property
that the total weight of edges between different clusters is small and the diameter of each cluster is poly-
logarithmic. Finally the third procedure finds the maximum-weight independent set in each cluster,
takes the union of them, and deletes some vertices to obtain an independent set in graph G.

Transformation

Input: Planar graph G = (V, E, ω) with weight function ω : V → R+.
Output: Planar graph Ḡ = (V, E, ω̄) with weight function ω̄ : E → R+.

1. Use Decomposition to find V1, . . . , VK .

2. For each edge e in parallel if e connects a vertex v in Vi with w in Vj where i < j then ω̄(e) := ω(v).

The weight function ω̄ has the following property.
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Lemma 3.2 Let ω̄ : E → R+ be the function obtained by Transformation. Then

∑

e∈E

ω̄(e) ≤ 6
∑

v∈V

ω(v).

Proof. Since V1, . . . , VK is a low-degree decomposition, for every vertex v if v ∈ Vi then v has at most
six neighbors in

⋃

l≥i+1 Vl. Therefore there are at most six edges in Ḡ with weight equal to ω(v) that
correspond to v. �

Next procedure finds clusters in a planar graph and is the core of our algorithm. The procedure
proceeds as follows. In the first iteration, a low-degree decomposition W1, . . . , WK of a planar graph
Ḡ is found. Then every vertex v ∈ Wi examines all edges incident to vertices in

⋃

l>i Wl (there are
at most six such edges) and selects the one of a maximum weight. Now consider the subgraph F
of Ḡ consisting of selected edges. Every vertex v ∈ Wi has at most one neighbor in

⋃

l>i Wl when
restricted to F and no neighbors in Wi (as Wi is an independent set). Thus F is a forest. Each
tree in F has diameter of O(K) = O(log n) in G and so every tree in F can perform computations
locally. In the next step, each tree T in F finds a subset of stars of T with the maximum weight.
Note that each tree can do all the computations locally and so this can be done in O(log n) steps.
Then each star is contracted to a new vertex. Finally these new vertices and the non-contracted
old vertices are considered in a new graph H . Graph H is also planar, and the above steps are
repeated in H . After O(log log n) iterations vertices of a resulting graph H correspond to subsets
of vertices of V (Ḡ) which induce connected subgraphs of Ḡ. These subsets are our clusters in Ḡ.

Clustering

Input: Planar graph Ḡ = (V, E, ω̄) with weight function ω̄ : E → R+ and n = |V |.
Output: Partition of V into L sets V1, . . . , VL.

1. H = Ḡ

2. Iterate log log n/ log 12
11 times:

(a) Call Decomposition to find a partition W1, . . . , WK of H with K = O(log n). Let WK+1 :=
∅. In addition let Zi :=

⋃

l>i Wl.

(b) For every vertex w in parallel:

(c) If w ∈ Wi and N(w) ∩ Zi 6= ∅ then:

• Let u(w) be a vertex in N(w) ∩ Zi such that

ω̄({w, u(w)}) := max
v∈N(w)∩Zi

ω̄({w, v}).

• Add {w, u(w)} to the auxiliary graph F .

(d) Each connected component of F is a tree of diameter O(K) = O(log n). For each tree T in
F , in parallel, find a set of disjoint stars S1 . . . Sk in T of the maximum weight.

(e) Modify H as follows:

• In each star, contract vertices to create a new vertex. Let V (H) consist of new vertices
and those vertices which were not contracted.

• For each new vertex v and w ∈ V (H) set the weight of {v, w} to be the sum of weights
of edges between vertices contracted to v and vertices contracted to w.

3. Let V (H) = {v1, ..., vL}. For each vi add to the clusters the set Vi which contains all vertices
contracted to vi in the above iterations.
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First let us note that after contractions the graph remains planar. As a result, the graph H is a
planar graph in all iterations of Clustering. We need three simple facts about the clusters V1, V2, . . . , VL

obtained by Clustering.

Lemma 3.3 Let V1, V2, . . . , VL be the clusters obtained by Clustering in Ḡ. Then each Vi induces a
graph in Ḡ of diameter O(logd n) where d = log 3/ log 12

11 .

Proof. Let di(v) be the diameter of the subgraph of Ḡ induced by vertices which have been contracted
to v in iterations 1, . . . , i and let di be the maximum of di(v). Then di ≤ 3di−1 + 2 and d0 = 1 as a
vertex v in the graph from the ith iteration either corresponds to a single vertex in the graph from the
iteration i− 1 or corresponds to a star of vertices in the iteration i− 1. In the first case di(v) = di−1(v)
and in the second di(v) ≤ 3di−1 + 2. One can easily solve the recursive inequality to obtain di ≤ 2 · 3i

and for k = log log n/ log 12
11 , dk = O(logd n). �

Lemma 3.4 Let V1, V2, . . . , VL be the clusters obtained by Clustering in Ḡ. Let P denote the sum
of weights of edges in Ḡ and let p be the sum of weights of edges between different clusters. Then
p = O(P/ log n).

Proof. Let Pi be the sum of weights of edges of H in the ith iteration of Clustering. First consider
the forest F obtained in 2(d). For each j = 1, . . . , K any vertex w ∈ Wj has at most six neighbors in Zj .
In step 2(c), w selects one edge (of the maximum weight) out of at most six and adds it to F . Therefore
the sum of weights of edges in F is at least Pi/6. In step 2(d), each tree T in F selects a set of disjoint
stars S1, . . . , Sk of the maximum weight. By considering an arbitrary root r in T and vertices which are
at an odd distance to r versus vertices which are at an even distance to r, the set of stars S1, . . . , Sk

satisfies
k

∑

i=1

∑

e∈E(Si)

ω̄(e) ≥
1

2

∑

e∈E(T )

ω̄(e).

Consequently, the sum of weights of edges in all stars is at least Pi/12. Since all of these stars are
contracted, we have Pi+1 ≤ 11/12Pi. Therefore for k = log log n/ log 12

11 , Pk = O(P/ log n). �

Lemma 3.5 Let d = log 3/ log 12
11 . Procedure Clustering finds clusters V1, V2, . . . , VL in O(log log n log∗ n logd+1 n)

rounds.

Proof. First note that by Lemma 3.3, the diameter of each cluster is O(logd n). We have O(log log n)
iterations of step 2. In each iteration we invoke Decomposition in H . Since vertices of H are clusters in
Ḡ of diameter O(logd n) and the Cole-Vishkin algorithm needs log∗ n rounds, the number of rounds used
to find the decomposition W1, . . . , WK in H is O(log∗ n logd+1 n). Finally, each tree in F has diameter
O(log n) in H and so the diameter in G is O(logd+1 n). Thus the set of stars S1, . . . , Sk can be found in
O(logd+1 n) rounds. �

In the last procedure we will find an independent set of large weight.

WISinPlanar

Input: Planar graph G = (V, E, ω) with weight function ω : V → R+ and n = |V |.
Output: Independent set I.

1. Call Transformation to obtain the weighted graph Ḡ.

2. Call Clustering to find the set of clusters V1, . . . , VL in Ḡ.

3. In each cluster Vj , in parallel, find an independent set Ij of the maximum weight.

4. I :=
⋃L

j=1 Ij .
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5. For every edge e = {u, v} which connects different clusters, if u ∈ I and v ∈ I then delete u
whenever ω(u) < ω(v) and delete v otherwise.

Theorem 3.6 Let G = (V, E, ω) be a planar graph on n vertices with a weight function ω : V → R+

, let ω∗ be the weight of a maximum-weight independent set in G, and let d = log 3/ log 12
11 . Procedure

WISinPlanar finds in O(log log n log∗ n logd+1 n) rounds an independent set I such that

ω(I) ≥ (1 − O(1/ log n))ω∗.

Proof. Let Q =
∑

v∈V ω(v). We have ω∗ ≥ Q/4 as G can be colored using four colors. Let I be the
set from step 4 and let I ′ denote the independent set obtained from I by a ”correction” in step 5. First
observe that ω(I) ≥ ω∗ and our goal is to show that the weight lost in the correction step is small. To
that end, first note that by Lemma 3.2 graph Ḡ obtained in step 1 is such that

∑

e∈E

ω̄(e) ≤ 6
∑

v∈V

ω(v).

Let P =
∑

e∈E ω̄(e). By Lemma 3.4, the total weight of edges between different clusters is O(P/ log n).
In addition if e = {u, v} then ω̄(e) ≥ min{ω(u), ω(v)}. Consequently, the weight of I ′ satisfies

ω(I ′) ≥ ω(I) − O(P/ log n) ≥ ω(I) − O(Q/ log n) ≥

ω∗ − O(ω∗/ log n) = (1 − O(1/ log n))ω∗.

�
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