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Abstract. We give efficient deterministic distributed algorithms which
given a graph G from a proper minor-closed family C find an approxi-
mation of a minimum dominating set in G and a minimum connected
dominating set in G. The algorithms are deterministic and run in a poly-
logarithmic number of rounds. The approximation accomplished differs
from an optimal by a multiplicative factor of (1 + o(1)).

1 Introduction

The most fundamental challenge in theory of distributed algorithms is to deter-
mine how the local structure of a network impacts its global properties. This
leads to a completely different computational paradigm than the sequential
model or the massively parallel PRAM model. Not surprisingly, many prob-
lems which admit efficient sequential protocols, such as the maximum matching
problem or the maximal independent set problem elude efficient distributed so-
lutions. In this paper, we will study distributed approximations for two classical
graph-theoretic problems assuming the underlying graph belongs to a proper
minor-closed family. We will consider the distributed model which was intro-
duced by Linial in [L92]. In this model, the network is represented by an undi-
rected graph with vertices corresponding to processors, and edges corresponding
to communication links between processors. The network is synchronized and
computations proceed in discrete rounds. In a single round a vertex can send
and receive messages from its neighbors, and can perform some local computa-
tions. Neither the amount of local computations nor the lengths of messages is
restricted in any way. Importantly, we will also assume that nodes in the net-
work have unique identifiers which are positive integers from {1, . . . , n} where
n = poly(|G|) is globally known and |G| is the order of the graph.
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1.1 Results

Although different possible measures of efficiency of a distributed algorithm can
be considered, traditionally a deterministic distributed algorithm is called effi-
cient in the model if it runs in a poly-logarithmic (in the order of the graph)
number of rounds. Only very few classical graph-theoretic problems are known
to admit an efficient deterministic distributed algorithm. For example, even the
maximal independent set problem, for which an efficient deterministic PRAM
algorithm exists [L86], still has an unknown distributed complexity. In this pa-
per, we shall focus on distributed approximation algorithms for two classical
problems, the minimum dominating set problem and the minimum connected
dominating set problem. Let β be a graph-theoretic function to be optimized and
let β∗ denote its optimal value. An almost exact approximation for the optimiza-
tion problem is a distributed approximation algorithm which given a positive
integer k, finds in a graph G in a poly-logarithmic number of rounds a solution
with value of at least (1 − O(1/ lnk |G|))β∗(G), where |G| is the order of G. For
example, Kuhn et. al. in [KMNW05b] give almost-exact approximations for the
maximum independent set and minimum dominating set problems in unit-disk
graphs.

In this paper we will give efficient distributed approximation algorithms for
the minimum dominating set problem and the minimum connected dominating
set problem for graphs which are from a proper minor-closed family. Let G =
(V, E) be a graph. Graph H is called a minor of G if for some subgraph G′ of
G, there is a partition of V (G′) into V1, . . . , Vl, such that the graph H̄, with
vertex set {1, . . . , l} and edges between i and j whenever there is an edge in G′

with one endpoint in Vi, another in Vj , is isomorphic to H . It is well-known (see
[D97]) that H is a minor of G if and only if it can be obtained from a subgraph
of G be a series of edge contractions. An infinite family of graphs C is called
minor-closed when for every graph G ∈ C any minor of G is also in C. A family C
is called proper if there exists a graph which is not in C , i.e. C is not the family
of all graphs. Certainly, the most important example of a proper minor-closed
family is the class of planar graphs. For C, let ρC be the infimum of the edge
density of graphs from C. Complexity of algorithms depends on ρC and we will
often use the fact that if C is proper then ρC is finite (see [NM05]).

Distributed approximation algorithms for planar graphs were studied in [CH04]
and [CHS06]. In [CH04], almost exact approximation are obtained for the maximum-
weight independent set problem provided the underlying graph is planar. In
[CHS06], an almost exact approximation for the maximum matching problem
is given in planar graphs and an almost exact approximation for the minimum
dominating set problem is given in planar graphs that do not contain K2,ln |G|

as a subgraph. In this paper we will not only get rid of the annoying additional
assumption on planar graphs from [CHS06] but also we will show how to solve
the problems in any minor closed family C. Finally, we will prove that the min-
imum connected dominating set problem can be approached in a very similar
way.
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A dominating set in a graph G is a subset D of vertices such that for every
vertex v /∈ D a neighbor u of v belongs to D. By γ(G) we will denote the cardi-
nality of a smallest dominating set in G. A dominating set D is called a connected
dominating set in G if in addition, the subgraph of G induced by D is connected.
We will denote by γc(G) the cardinality of the smallest connected dominating
set in a connected graph G. For the minimum dominating set problem, we will
prove that there is a distributed algorithm which given positive integer q finds

in graph G ∈ C a dominating set D̄ such that |D̄| ≤
(

1 + O
(

1
lnq |G|

))

γ(G). The

algorithm runs in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q + 1)ρC ln 3.
(Theorem 1.) For the minimum connected dominating set problem we will show
that there is a distributed algorithm which finds in a connected graph G ∈ C

a connected dominating set D̄ such that |D̄| ≤
(

1 + O
(

1
lnq |G|

))

γc(G). The

algorithm runs in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds with r = 6(q + 1)ρC ln 3.
(Theorem 2.)

1.2 Related Work

We briefly indicate how our contribution compares with other results refering to
Elkin’s survey [E04], for a more comprehensive overview. First let us mention
that efficient distributed algorithms that find an exact solution do not exist for
the minimum dominating set problem even when restricted to cycles [L92]. In
addition, recently, Kuhn et. al. in [KMW04] showed that the number of rounds
required to achieve a poly-logarithmic approximation ratio for minimum dom-
inating set is at least Ω(

√

log |G|/ log log |G|) or Ω(log ∆/ log log ∆), where ∆
denotes the maximum degree of graph G.

On a more positive note, Kutten and Peleg [KP95] gave an efficient dis-
tributed algorithm which finds a dominating set of size at most |G|/2 in an
arbitrary graph G. Not surprisingly, if randomization is allowed, then fast ap-
proximations can be obtained. In particular, a nice algorithm from [KW03] gives
a randomized O(k∆2/k log ∆)-approximation in a constant time using an LP
relaxation. As in the case of the minimum dominating set problem, efficient
randomized algorithms for the connected dominating set are known [DPRS03].

It is also worth mentioning that our algorithms share many similarities
with almost-exact approximations for the above problems in unit-disk graphs
from [KMNW05b] and particularly [CH06]. Specifically, algorithms for unit-disk
graphs and graphs from a minor closed families are both attacked by first finding
a cluster graph and then perform computations locally. Clustering from [CH04]
(as well as [KMNW05b]) exploits the bounded-growth property of unit-disk
graphs and is based on the ruling-set technique from [AGLP89]. The clustering
in this paper, generalizes the clustering procedures from [CH04] and [CHS06]
and relies on properties of minor-monotone families.
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1.3 Notation and Organization

We will use the standard graph-theoretic notation and terminology. In particular,
following the convention from [D97], for a graph G, |G| will denote the number
of vertices in G and ||G|| the number of edges. In the rest of the paper we
will first give an auxiliary distributed O(ln |G|)-approximation for the minimum
dominating set problem in a graph G ∈ C (Section 2). Section 2 also contains
a generalization of the clustering from [CH04] to minor-closed families C. In
Section 3, we give our approximation algorithms and give a specification to the
important case when C is the class of planar graphs.

2 Tools

Let C be a proper minor-closed family of graphs. In this section, we will describe
two auxiliary algorithms. The first procedure finds a O(ln |G|)-approximation
of the minimum dominating set in a graph G ∈ C. This is a very simple dis-
tributed greedy algorithm which will be used as an initial procedure that yields
an auxiliary graph which is further clustered by the main algorithm. The second
procedure is a modification of the clustering algorithm from [CH04]. This is our
main tool for finding a clustering of a graph from C.

2.1 Distributed O(ln |G|)-approximation

For a proper minor-closed family C let ρC be the edge density of C, i.e. ρC is the
infimum of ρ such that for every graph G ∈ C, ||G|| ≤ ρ|G|. Then ρC is finite as
long as C is proper (see [NM05]) and if G is nontrivial (i.e. contains a nonempty
graph) then ρC ≥ 0.5. Let G ∈ C and suppose that V1, V2 is a partition of V . Let

degi(v) = |N(v) ∩ Vi|, ∆i = max
v

degi(v)

where N(v) is a set of neighbours of v. In addition for S ⊂ V let Ni(S) denote
the set of vertices in Vi which have a neighbor in S.

Lemma 1. Let C be a proper nontrivial minor closed family. Let G be a nonempty
graph from C, let V1, V2 be a partition of V (G) and let B = {v|deg1(v) ≥ ∆1/2}.
If ∆1 ≥ 4ρC and D is a subset of V which dominates all vertices from V1 then

|D| ≥
|B|

6ρC(2ρC + 1)
.

We will consider the following greedy algorithm.

GreedyDS

Input: Graph G = (V, E) from C.
Output: Dominating set D∗ in G.

(1) D∗ := ∅, V1 := V , V2 := ∅.
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(2) for i := 0 to blg |G|c − dlg 4ρCe − 1 do
(a) Let B := {v|deg1(v) ≥ |G|/2i+1}.
(b) If v ∈ V1 and N(v) ∩ B 6= ∅ then move v from V1 to V2.
(c) D∗ := D∗ ∪ B. Delete all vertices in B and all edges incident to B from

G.
(3) Let D∗ := D∗ ∪ V1. Return D∗.

We shall first make a few preliminary observations about GreedyDS. Let

G(i) be the graph in the ith iteration of the for loop. Similarly let V
(i)
k (B(i)),

be the set Vk (B) in the ith iteration and let ∆
(i)
1 = ∆1(G(i)). We first observe

the following easy lemma.

Lemma 2. Let C be a proper nontrivial minor closed family and let G ∈ C.

– We have ∆
(i)
1 ≤ |G|/2i.

– If B(i) 6= ∅ then ∆
(i)
1 ≥ 4ρC.

We can now prove the main property of GreedyDS.

Lemma 3. Let C be a proper nontrivial minor closed family. Let D be a domi-
nating set in graph G = (V, E) from C. Then

|B(i)| ≤ 6ρC(2ρC + 1)|D|.

In addition, if V ∗
1 denotes the set of vertices in V1 in the step (3) of GreedyDS

then
|V ∗

1 | ≤ (4ρC + 2)|D|.

Proof. Let B(<i) := B(0)∪· · ·∪B(i−1). Vertices from V
(i)
1 cannot be dominated

by vertices from B(<i) as all neighbors of B(<i) in G are contained in B(<i)∪V
(i)
2 .

Consequently D∩ (V
(i)
1 ∪V

(i)
2 ) is a set which dominates V

(i)
1 in G(i). By Lemma

2, if B(i) 6= ∅ then ∆1(G(i)) ≥ 4ρC and we have B(i) ⊆ {v|deg1(v) ≥ ∆
(i)
1 /2}. As

G(i) is a subgraph of G, Lemma 1 implies that

|B(i)| ≤ 6ρC(2ρC + 1)|D ∩ (V
(i)
1 ∪ V

(i)
2 )| ≤ 6ρC(2ρC + 1)|D|.

To prove the second part, note that after the iterations from step (2), the maxi-
mum degree ∆1 ≤ 4ρC + 2. As a result, to dominate all vertices from V ∗

1 at least
|V ∗

1 |/(4ρC + 2) vertices are needed.

Lemma 4. Let C be a minor closed family with ρC > 0 and let G ∈ C. GreedyDS

finds a dominating set D∗ with

|D∗| = O(ln |G|γ(G)),

where γ(G) is the size of the minimum dominating set in G.

Proof. D∗ is a dominating set as in step (3) all of the remaining vertices from
V1 are added to D∗. There are less than lg |G| = Θ(ln |G|) iteration of step (2)
and so, by Lemma 3, |D∗| = O(ln |G|γ(G)).
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2.2 Clustering algorithm

We will modify the clustering method from [CHS06] (see also [CH04]) which
was applied there to planar graphs. The basic idea of the method is to find
appropriate subgraphs of a graph and contract them. The process is repeated
O(ln ln |G|) times and the vertices of the graph obtained from contractions in all
of the previous iterations give clusters of G. To find appropriate subgraphs it is
neccessary to consider weights on edges. We shall start with the following basic
observation.

Lemma 5. Let C be a proper minor closed family. Let G = (V, E) be a graph
from C and let A = {v|deg(v) ≤ 3ρC}. Then

|A| ≥ |G|/3.

As mentioned before, we will assumme that vertices have unique identifiers which
are positive integers. For v ∈ V (G) the identifier of v will be denoted by ID(v).
Note that if ID(v) ≤ n for every vertex from V (G) then |G| ≤ n.

Decomposition

Input: G ∈ C, number n such that ID(v) ≤ n for v ∈ V (G).
Output: Partition V1, . . . , Vlogk n of G with k = O(1).

1. Let U := V (G), i := 1 and k := (9ρC + 3)/(9ρC + 2).
2. Iterate logk n + 1 times:

(a) Let A be the set of vertices in G[U ] of degree at most 3ρC .
(b) Use the Cole-Vishkin algorithm from [CV86] to find a maximal indepen-

dent set I in the subgraph of G[U ] induced by A.
(c) Vi := I , i := i + 1, U := U \ I .

Lemma 6. [CH04] Let G = (V, E) be a graph from C such that the identifiers
of V are in {1, . . . , n}. Then the procedure Decomposition finds a partition
V1, . . . , Vlogk n of V (G) such that each Vi is an independent set and for every
v ∈ Vi, deg(v,

⋃

j>i Vj) ≤ 3ρC. The algorithm runs in O(ln∗ n ln n) rounds.

We will now describe our clustering algorithm. This is essentially the algo-
rithm from [CH04] which is here adopted to minor-closed families. Main idea of
the algorithm is to find appropriate subgraphs of G and contract the subgraphs
so that the number of contracted edges is a constant fraction of ||G||. The pro-
cess is iterated O(ln ln n) times where |G| ≤ n. We will identify graphs with their
edge sets and if ω is a weight function defined on the edge set of graph H then
for F ⊆ E(H), ω(F ) :=

∑

e∈F ω(e). In addition, N(w) will denote the set of
neighbors of vertex w.

Clustering

Input: Graph G = (V, E) ∈ C, number n such that ID(v) ≤ n for every v ∈ V ,
positive integer c.
Output: Partition of V .



7

1. H := G and let ω(e) := 1 for every e ∈ H . Let l := 6cρC ln ln n.
2. Iterate l times:

(a) Call Decomposition to find a partition W1, . . . , WK of H with K =
O(ln n). Set WK+1 := ∅ and let Zi :=

⋃

j>i Wj .
(b) For every vertex w:
(c) If i is such that w ∈ Wi and N(w) ∩ Zi 6= ∅ then:

– Let u(w) be a vertex in N(w) ∩ Zi such that

ω({w, u(w)}) := max
v∈N(w)∩Zi

ω({w, v}).

– Add {w, u(w)} to the auxiliary graph F .
(d) Each connected component of F is a tree of diameter O(K) = O(ln n).

For each tree T in F , in parallel, find a set of disjoint stars S1 . . . Sk in
T such that ω(S1 ∪ · · · ∪ Sk) ≥ ω(T − (S1 ∪ · · · ∪ Sk)).

(e) Modify H as follows:
– Contract each star Si to a new vertex x(Si).
– For every vertex x(Si) and y ∈ V (H) ∩ N(Si) set the weight of

ω({x(Si), y}) :=
∑

u∈V (Si)∩N(y)

ω({u, y})

and set V (H) :=
⋃

{x(Si)} ∪ (V (H) −
⋃

V (Si)).
3. If V (H) = {v1, ..., vL} then for each vi let Vi be the set of vertices of G

contracted to vi in all of the above iterations. Return V1, . . . , VL.

Note that graph H obtained in each iteration of Clustering belongs to C
and so its edge density is at most ρC . We can summarize the performance of
Clustering as follows.

Lemma 7. Let V1, . . . , VL be the clusters in G obtained from Clustering.
Then

1. For every i, G[Vi] is a subgraph of diameter O(lnd n), where

d = 6cρC ln 3.

2. The number of edges connecting different clusters is O(||G||/ lnc n).
3. Clustering runs in O(ln ln n ln∗ n ln1+d n) rounds.

3 Domination Problems

Let C be a proper minor-closed family of graphs. In this section, we will give
almost exact approximations for the minimum dominating set problem and for
the connected minimum dominating set problem in graphs G such that G ∈
C. Instead of finding a clustering directly in graph G, it is very convenient to
work in an auxiliary graph that arises from the O(ln n)-approximation of the
dominating set and perform the clustering in this graph. By virtue of the minor-
closed property of C, the auxiliary graph will also be a member of C.
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3.1 Minimum Dominating Set

We will start with an almost exact approximation for the minimum dominating
set problem.

Definition 1. Let G = (V, E) be a graph and let D = {v1, . . . , vl} ⊆ V be a
dominating set in G. Then let A(D, G) be the graph (V,E) obtained as follows.

– Partition V = V1∪V2∪· · ·∪Vl so that (1) vi ∈ Vi and (2) for every v ∈ V \D,
v ∈ Vi if {v, vi} ∈ E and if {v, vj} ∈ E for j 6= i then ID(vj) > ID(vi).

– V := {V1, . . . , Vl} (contract Vi to a vertex) and {Vi, Vj} ∈ E (i 6= j) if there
is an edge in G between a vertex from Vi and a vertex from Vj .

In addition, we will call vi the center of Vi. Let U be a subset of V then U
corresponds in a natural way to subset U of V (G) by

U :=
⋃

W∈U

W.

If U1,U2, . . . ,Ul is a partition of V then the corresponding sequence U1, U2, . . . , Ul,
with Ui :=

⋃

W∈Ui
W , is a partition of V (G). We will then say that U1, U2, . . . , Ul

arises from U1,U2, · · · ,Ul. Finally, for a graph H = (X, F ) if Y ⊆ X then bd(Y )
will denote the set of all vertices in Y which have a neighbor in X \ Y .

For a dominating set D obtained by GreedyDS in G let A := A(D, G).
From Lemma 4

|A| = O(γ(G) ln |G|). (1)

Since A is obtained from G be contracting Vi’s, A ∈ C. In addition, identifiers
of vertices from A are bounded from above by n = poly(|G|).

ApproxDS

Input: Graph G = (V, E) from C with ID(v) ≤ n for any v ∈ V (G), a positive
integer q.
Output: Dominating set D̄ in G.

1. Call GreedyDS to find a dominating set D and consider A = (V,E).
2. Call Clustering with c = 1 + q in A.
3. Let U1, . . . ,Ul be a partition of V and let U1, . . . , Ul be a partition of V (G)

that arises from U1, . . . ,Ul.
4. In each Ui in parallel:

(a) Find locally in Ui a set Di ⊆ Ui of the smallest size such that Di domi-
nates Ui \ bd(Ui) in G.

(b) Let Ci be the set of centers of vertices from bd(Ui).
(c) Let D̄i := Di ∪ Ci.

5. Return D̄ :=
⋃l

i=1 D̄i.
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Theorem 1. Let C be a proper minor-closed family of graphs. Algorithm Ap-

proxDS finds in a graph G ∈ C a dominating set D̄ such that

|D̄| ≤

(

1 + O

(

1

lnq |G|

))

γ(G)

in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q + 1)ρC ln 3.

Proof. We will first note that set D̄ returned in step five of ApproxDS is a
dominating set. Indeed let v ∈ V (G) and suppose that v /∈ D̄. If for some i,
v ∈ Ui \ bd(Ui) then v is dominated by a vertex from Di. Otherwise for some i,
v ∈ bd(Ui) and so, by definition of A, v ∈ W for some W ∈ bd(Ui). Consequently,
v is dominated by the center of W and the center is in Ci. To establish the bound
for |D̄| let us first recall that A ∈ C and so ||A|| = O(|A|). In addition the
graph induced by border vertices of A, i.e. A [

⋃

i bd(Ui)], has denisty ρC and so
|
⋃

i bd(Ui)| = O (||A [
⋃

i bd(Ui)] ||) and by Lemma 7 part 2 applied with n = |G|,
|
⋃

i bd(Ui)| = O(||A||/ lnq+1 |G|) as |A| ≤ |G|. Consequently, as ||A|| = O(|A|)
and (1) holds, |

⋃

i bd(Ui)| = O(γ(G)/ lnq |G|). Since bd(Ui) are pairwise disjoint
and |bd(Ui)| = |Ci|, we have

l
∑

i=1

|Ci| = O(γ(G)/ lnq |G|). (2)

Let D∗ be a dominating set in G with |D∗| = γ(G). Then |D∗∩Ui| ≥ |Di| as every
vertex in Ui \ bd(Ui) must be dominated by a vertex from D∗∩Ui. Consequently

γ(G) = |D∗| =
∑l

i=1 |D
∗∩Ui| ≥

∑l
i=1 |Di| and so |D̄| ≤

∑l
i=1 |Di|+

∑l
i=1 |Ci| ≤

γ(G)+
∑l

i=1 |Ci| which in view of (2) gives |D̄| =
(

1 + O
(

1
lnq |G|

))

γ(G). To esti-

mate the running time, note that Clustring runs in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds in A and every vertex in A has diameter of at most two in G. In ad-
dition for every i, A[Ui] has diameter O(lnr |G|) by Lemma 7 part 1 and so
the diameter of each G[Ui] is also O(lnr |G|). Therefore, finding Di and Ci

can be done in O(lnr |G|) rounds and the time complexity of ApproxDS is
O(ln ln |G| ln∗ |G| ln1+r |G|).

3.2 Minimum Connected Dominating Set

An algorithm for the minimum connected dominating set problem is very similar.
In fact the first three steps are identical and only a very small change must be
made in steps four and five. First note that the auxiliary graph A satisfies

|A| = O(γc(G) ln |G|) (3)

where γc(G) is the size if the smallest connected dominating set as γ(G) ≤
γc(G) ≤ 3γ(G) in any connected graph G.

ApproxCDS

Input: A connected graph G = (V, E) ∈ C, a positive integer q.
Output: A connected dominating set D̄ in G.
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1. Call GreedyDS to find a dominating set D and consider A = (V,E).
2. Call Clustering with c = 1 + q in A.
3. Let U1, . . . ,Ul be a partition of V obtained in step 2. Let U1, . . . , Ul be a

partition of V (G) that arises from U1, . . . ,Ul.
4. In each Ui in parallel:

(a) Let Ci be the set of centers of vertices from bd(Ui).
(b) Find locally in Ui a set Di ⊆ Ui of the smallest size such that Di domi-

nates Ui in G, G[Di] is a connected subgraph of G, and Ci ⊆ Di.
(c) For every cluster Uj such that there is an edge in A between Ui and Uj

find the shortest path Pij between a vertex from Di and a vertex from
Dj and let Pi :=

⋃

V (Pij) where the union is taken over all of these
paths.

(d) Let D̄i := Di ∪ Pi.

5. Return D̄ :=
⋃l

i=1 D̄i.

The argument is slightly different than the one given for Theorem 1 as this time
the main part of the argument is to show that that G contains a connected
dominating set D′ such that |D′| ≤ (1 + O(1/ lnq |G|))γc(G), G[D′ ∩ Ui] is a
connected subgraph, D′ ∩ Ui dominates Ui, and Ci ⊆ D′ ∩ Ui.

Lemma 8. Let G ∈ C be a connected graph. Then G contains a connected domi-
nating set D′ such that |D′| ≤ (1+O(1/ lnq |G|))γc(G) and for every i = 1, . . . , l

1. G[D′ ∩ Ui] is a connected subgraph of G,
2. D′ ∩ Ui dominates Ui,
3. Ci ⊆ D′ ∩ Ui.

Theorem 2. Let C be a minor-closed family. Algorithm ApproxDS finds in a
connected graph G ∈ C a connected dominating set D̄ such that

|D̄| ≤

(

1 + O

(

1

lnq |G|

))

γc(G)

in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where r = 6(q + 1)ρC ln 3.

Proof. First note that the running time can be proved in the same way as in
the case of Theorem 1. Also, clearly, D̄ is a dominating set in G. We claim that
G[D̄] is a connected subgraph in G. Clearly G[D̄i] is a connected subgraph and
since G is connected so is A. Consider the graph C(A) obtained from A by
contracting each Ui to a single vertex. C(A) is clearly a connected graph. Since
Ci ⊆ Di, it is enough to note that whenever there is an edge {Ui,Uj} in C(A)
then there is a path Pij in G[D̄] connecting a vertex from Ci with a vertex from
Cj . To estimate |D̄| let us first show that

l
∑

i=1

|Pi| = O(γc(G)/ lnq |G|). (4)
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By Lemma 7 part 2, the sum of degrees of vertices in C(A) is O(|E|/ lnq+1 |G|) =
O(|γc(G)|/ lnq |G|). Consequently, the number of Pij ’s is O(|γc(G)|/ lnq |G|). In
addition, |V (Pij)| ≤ 4 as if there is an edge {W, W ′} ∈ E with W ∈ Ui and
W ′ ∈ Uj then there exist w ∈ W and w′ ∈ W ′ such that {w, w′} is the edge in
G. Since the center of W is in Di and the center of W ′ is in Dj , the shortest path

between Di and Dj contains at most four vertices. Consequently,
∑l

i=1 |D̄i| =
∑l

i=1 |Di| + O(γc(G)/ lnq |G|).
Finally from Lemma 8, there exists a connected dominating set D′ in G

such that |D′| ≤ (1 + O(1/ lnq |G|))γc(G), G[D′ ∩ Ui] induces a connected sub-
graph, D′ ∩ Ui dominates Ui, and Ci ⊆ D′ ∩ Ui for every i. Since Di, found
in the step 4(b), is a set of the smallest size such that G[Di] is a connected
subgraph, Di dominates Ui and Ci ⊆ Di, we must have |Di| ≤ |D′ ∩ Ui|. As

a result, |D̄| =
∑l

i=1 |D̄i| =
∑l

i=1 |Di| + O(γc(G)/ lnq |G|) ≤
∑l

i=1 |D
′ ∩ Ui| +

O(γc(G)/ lnq |G|) = |D′|+O(γc(G)/ lnq |G|) and so |D̄| ≤
(

1 + O
(

1
lnq |G|

))

γc(G).

3.3 Planar graphs

Class of planar graphs P has ρP = 3 and so by Theorem 1 and Theorem 2 we
have almost exact approximations for the minimum dominating set problem and
the minimum connected dominating set problem in planar graphs that achieve
the approximation error of O(1/ lnq |G|) and run in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds where r = 18(q + 1) ln 3. In [CHS06] an approximation algorithm for the
minimum dominating set problem with q = 1 is given for the special subclass of
planar graphs. The algorithm from [CHS06] runs in O(ln ln |G| ln∗ |G| ln1+r |G|)
rounds where r = 27.7 and so it is slightly faster than the algorithms from
Theorem 1 and Theorem 2 which run O(ln ln |G| ln∗ |G| ln1+r |G|) rounds where
r = 36 ln 3. We can however apply techniques from [CHS06] and reduce the time
complexity significantly. Using the SmallCluster procedure from [CHS06] and
the fact that star arboricity of a planar graph is at most five, we can achieve
the approximation error of O(1/ lnq |G|) in O(ln ln |G| ln∗ |G| ln1+r |G|) rounds
where r < 5.54(q + 1). In fact, using Tutte’s Theorem on the tree arboricity
of a graph with a bounded density of any subgraph (see [D97]), we can apply
SmallCluster procedure and reduce the time complexity of our algorithms for
minor-closed families. Due to space limitations, we will not give this refinement
here.
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