Distributed Approximation Algorithm for Minimum Dominating Set in Planar Graphs.

Model of computation

distributed,

synchronous,

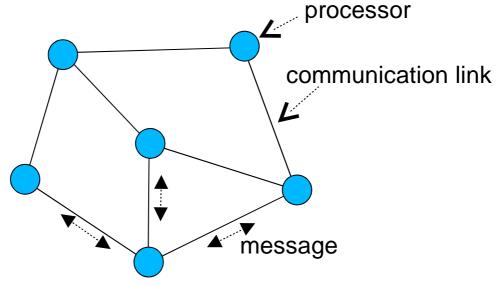
message passing model of computation

Synchronous <=> computation proceed in rounds

In each *round*, each vertex:

- 1. send messages to its neighbours
- 2. receive messages from its neighbours
- 3. does local computation.

Communication graph:



Model of computation

- Our algorithm computes "something" in the communication graph (there is no other input graph).
- Vertices have different ID;
 n:=|V(G)| is known.
- Randomization is not allowed.
- In a ball of radius t it is possible to compute "everything" in time
 O(t) (unlimited computational power of a single vertex ...).

Our problem

to find approximation of Minimum Dominating Set (MDS) and Min Connected Dom Set (MCDS)

- in planar graph
- in distributed/ synchronous model of computation.
- in polylog(|V(G)|) time

Definition of MDS/ MCDS:

- A set of vertices **D** is a dominating set in graph **G** if each vertex of **G** is in **D** or has a neighbour in **D**.
- 2. **MDS(G)** is a dominating set of the smallest cardinality.
- 3. MCDS(G) is a dominating set D such that G[D] is connected, of the smallest cardinality.

Approximation ratio and time

our algorithm computes almost exact approximation of MDS/ MCDS problem ...

Approx.
ratio
$$\sum_{i=1}^{|D|} \sum_{j=1}^{i} \frac{1}{\log n}$$

$$n = |V(G)|; G - comm. graph$$

$$D - output of algorithm$$

$$D^* = MDS(G); optimal solution$$

in time $O(\log_2 \log_2 n \log^* n \log^{6.5} n)$ (time = number of rounds)

Main tool: clusters



definition of clusters

- {U_i}_{i=1..k} is a partition of V(G); clusters are connected subgraphs, induced by sets U_i
- 2. diameter of each cluster is $< \log^{d} n$
- 3. no. of connectors is $< \frac{1}{\log_2^c n} |E(G)|$

where
$$d = \frac{c \log_2 3}{\log_2 \frac{1}{1 - \frac{9}{10}\kappa}} \approx 5.54 c$$

Main tool: clusters

definition of clusters (cont.) (when edges have weights $\omega(e)$)

$$\omega(\mathbf{C}) < \frac{1}{\log_2^c n} \omega(\mathbf{E}(\mathbf{G}))$$

where C is a set of connectors.

We know how to compute clusters in polylog time:

 $log_2 log_2 n \ log^* n \ log_2^{d+1} n$

What is n? |V(G)|≤n.

Vertex version:

$$\mathbf{B} \left| < \frac{6}{\log_2^c n} \left| \mathbf{V} \left(\mathbf{G} \right) \right| \right|$$

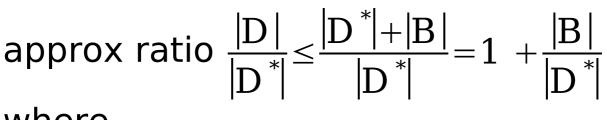
where

B – set of border vertices

How to use clusters to approximate MDS ?

- 1. find clusters $\{U_i\}_{i=1..k}$
- 2. in each cluster U_i , in parallel, find exact solution D_i
- 3. return $D_1 \cup ... \cup D_k$

It does not work ... why?



where

D - output of the algorithm

$$D^* - MDS(G)$$

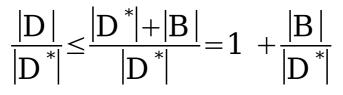
B - set of border vertices

from def of clusters: $|B| \le \frac{O(1)}{\log_2^c n} n$

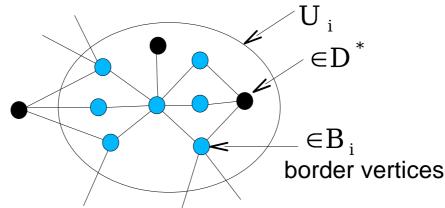
approx ratio $\frac{|D|}{|D^*|} \le 1 + \frac{1}{\log_2^c n} \frac{n}{|D^*|}$ but D* can be <u>much smaller</u> then n

How to use clusters to approximate MDS ?

explanation of inequality:



why $|D| \leq |D^*| + |B|$ holds?



because ...

$$|MDS(U_i)| \leq |(U_i \cap D^*) \cup B_i|$$

 $|D| = \sum_{i} |MDS(U_{i})| \le \sum_{i} |(U_{i} \cap D^{*}) \cup B_{i}| = |D^{*}| + |B|$

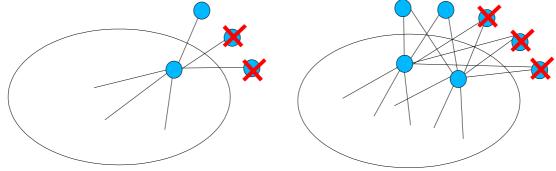
where

- $\rm D~$ output of the algorithm
- $D^* MDS(G)$
- B set of all border vertices
- $B_{\rm i}\,$ set of border vertices of $U_{\rm i}$

To use clusters we need some simple *preprocessing*

an example of simple preprocessing that works for Maximum Matching:

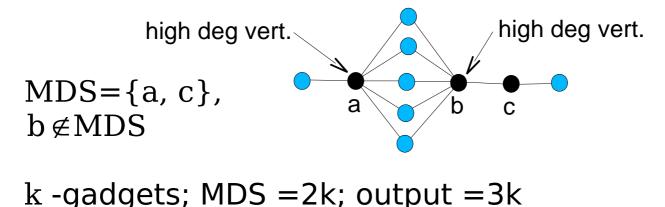
- G -> G'
- 1. $|MM(G')| > \Omega(|V(G')|)$
- 2. MM(G) = MM(G')



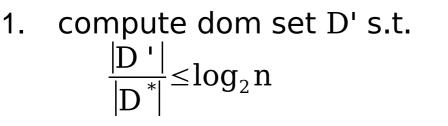
A simple preprocessing for MDS ???

 e.g. "add to the solution all vertices of high degree (at the beginning)"

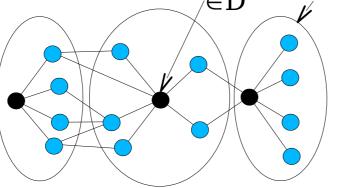
. it does not work !!!



MDS: algorithm



2. build "small clusters" $f \in D$ ' small cluster



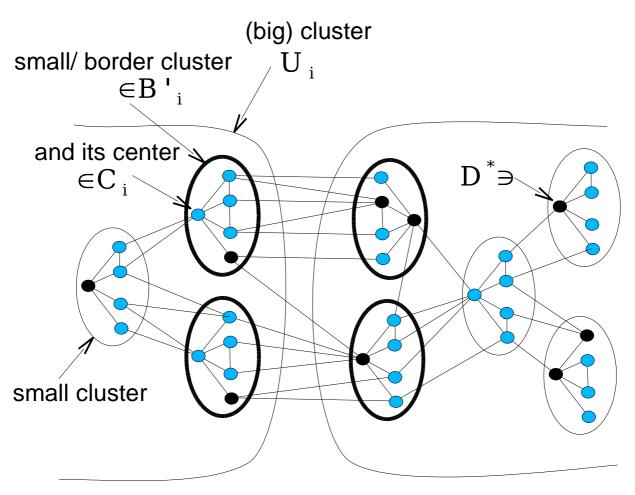
preprocessing

- 3. contract small clusters to get graph G'
- 4. compute clusters in G' with $|B'| < O(1)/\log_2^{c+1}n |V(G')|$
- 5. in each <u>big</u> cluster U_i of G, in parallel, compute exact solution D_i
- 6. return $D_1 \cup \ldots \cup D_k$

MDS: approximation ratio $\frac{|D|}{|D^*|} \le \frac{|B^*|}{1} + \frac{|B^*|}{|D^*|} \le \frac{|D^*|}{1} + \frac{O(1)}{\log_2^c n}$ D – output of algorithm B' - set of all small/ border clusters D^* - MDS(G) [2] from def. of clusters: $|\mathbf{B}'| \leq \frac{O(1)}{\log_2^{c+1} n} |\mathbf{D}'| \leq \frac{O(1)}{\log_2^{c} n} |\mathbf{D}^*|$ D' - logn aprox of MDS in G Sum over all clusters **[1]** why $|D| \le |D^*| + |B'|$??? $|MDS(U_i)| \leq |(U_i \cap D^*) \cup C_i|$ $\sum_{i} |MDS(U_{i})| \leq \sum_{i} |(U_{i} \cap D^{*}) \cup C_{i}|$ $|\mathsf{D}| \leq |\mathsf{D}^*| + |\mathsf{B}'|$ B'_i - set of small/ border clusers of U_i C_i - set of **centers** of clusters from B'_i $|B'_{i}| = |C_{i}|$

MDS: approximation ratio

 $(U_i \cap D^*) \cup C_i \text{ dominates } U_i ~ !!!$



MCDS: algorithm

1. compute dom set D' s.t.

$$\frac{|D'|}{|MDS(G)|} \leq \log_2 n$$

- 2. build "small clusters"
- 3. contract small clusters to get graph G'
- 4. compute clusters in G' with $|B'| < O(1)/\log_2^{c+1}n |V(G')|$
- 5 in each <u>big</u> cluster U_i of G, in parallel, compute exact solution D_i (this time MCDS ...)
- for every two <u>big</u> clusters U_i and U_j that are connected, find shortest path P_{ij} connecting D_i and D_j

7. return
$$\overline{\mathbf{D}} = \begin{pmatrix} \bigcup & \mathbf{D}_i \\ i & \mathbf{D}_i \end{pmatrix} \cup \begin{pmatrix} \bigcup & \mathbf{V} & (\mathbf{P}_{ij}) \end{pmatrix}$$

$\begin{array}{c} \textbf{MCDS: approximation ratio} \\ \hline |\bar{D}| & | & |D| \\ |\bar{D}^*| \leq |D| \\ |\bar{D}^*| + \frac{O(1)}{\log_2^c n} \leq 1 + \frac{O(|B^*|)}{|D^*|} + \frac{O(1)}{\log_2^c n} \leq 1 + \frac{O(1)}{\log_2^c n} \\ \hline \bar{D} & \text{- output of algorithm;} \\ \hline \bar{D} & = D \cup_{i,j}^{\cup} V(P_{ij}) \end{array}$

D - sum of MCDS in all clusters B' - set of all small/ border clusters D^{*} - MCDS(G)

[3] again: $|B'| \leq \frac{O(1)}{\log_{2}^{c+1} n} |D'| \leq \frac{O(1)}{\log_{2}^{c} n} |MDS(G)| \leq \frac{O(1)}{\log_{2}^{c} n} |D^{*}|$ **[1]** $\left| \bigcup_{i,j} V(P_{ij}) \right| \leq O(|B'|) \leq \frac{O(1)}{\log_{2}^{c} n} |D^{*}|$ because paths P_{ij} have length <=3, and their no. is <=O(|B'|)

MCDS: approximation ratio

[2] why $|D| \le |D^*| + O(|B'|)$???

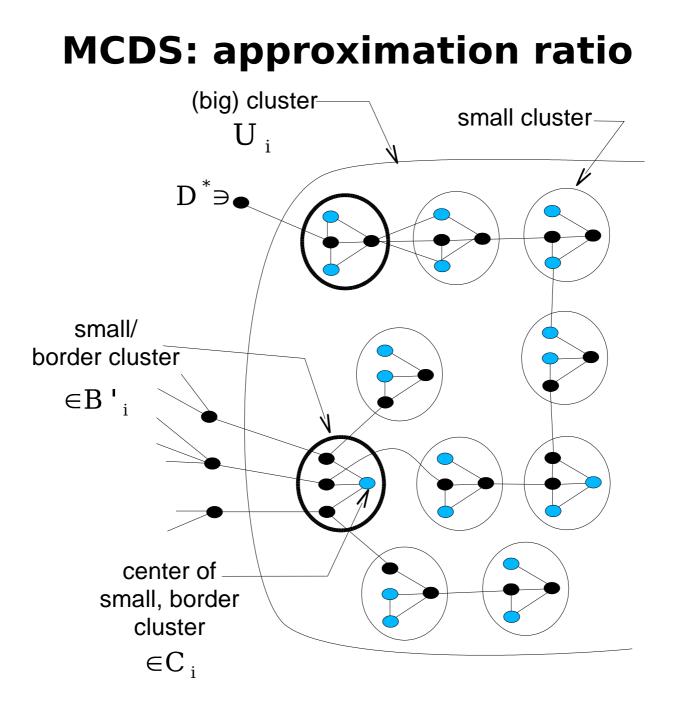
- 1. no. of conn. comp. in $U_i \cap D^*$ may by large
- 2. no. of conn. comp. in $(U_i \cap D^*) \cup C_i$ is $\leq |B'_i| = |C_i|$, where B'_i - set of small/ border clusers of U_i C_i - set of **centers** of clusters from B'_i
- 3. if k is a no. of conn. components in $(U_i \cap D^*) \cup C_i$ then we can connect these comp. adding vertices from $\tilde{C_i} \subset U_i$, where $|\tilde{C_i}| \leq O(k)$!!!

therefore:

 $(U_i \cap D^*) \cup C_i \cup \tilde{C_i}$ is a CDS in U_i and:

$$\sum_{i} |MCDS (U_{i})| \leq \sum_{i} |(U_{i} \cap D^{*}) \cup C_{i} \cup \tilde{C}_{i}|$$
$$|D| \leq |D^{*}| + O(|B'|)$$

B' - set of all small/ border clusers



$\log n \text{ -aprox of MDS}$

GreedyDS

1. D:= \emptyset ; V₁:=V; V₂:= \emptyset

- 2. for i:=0 to logn-4 do
 - a) B:= { v: deg₁(v)> n/2ⁱ⁺¹ }
 - b) vertices from V₁ dominated by B jump form V₁ to V₂
 - c) $D:=D \cup B$; delete vertices form B
- 3. D:= D \cup V₁; return D

Why this algorithm computes logn approx of MDS in planar G ???

```
Let D^* = MDS(G)
we can prove: |B^i| < O(|D^*|)
and sum over all logn iterations ...
```

```
Why \Omega(|B^{i}|) < |D^{*}|?
```

Generalization to proper minor-closed families of graphs

???

Open problem: MWDS (Weighted Dom Set)

??? ??? ???