Distributed
Approximation
Algorithm for
Minimum Dominating
Set
in Planar Graphs.

Model of computation

distributed,
synchronous,
message passing
model of computation

Synchronous <=>
computation proceed in rounds

In each round, each vertex:
1. send messages to its neighbours
2. receive messages from its
neighbours
3. does local computation.

Communication
gr aph: L processor

communication link

h
o

e
a A" message

Model of computation

Our algorithm computes "something"
In the communication graph (there is
no other input graph).

Vertices have different ID;
n:=|V(G)| is known.

Randomization is not allowed.

. In a ball of radius t it is possible to
compute "everything" in time

O(t) (unlimited computational power
of a single vertex ...).

Our problem

to find approximation of
Minimum Dominating Set (MDS)
and Min Connected Dom Set (MCDS)

iIn planar graph

in distributed/ synchronous
model of computation.

in polylog(|V(G)]|) time

Definition of MDS/ MCDS:
1. A set of vertices D is a dominating

set in graph G if each vertex of G
IS in D or has a neighbour in D.

.MDS(G) is a dominating set

of the smallest cardinality.

.MCDS(G) is a dominating set D

such that G[D] is connected,
of the smallest cardinality.

Approximation ratio
and time

our algorithm computes
almost exact approximation
of MDS/ MCDS problem ...

Appr.ox. . |D| <1+ 1
ratio ‘D* 10gn

n =|V(G)|; G -comm. graph
D -output of algorithm
D* =MDS(G); optimal solution

in time O(log.log,n log™ log®~n)
(time = number of rounds)

Main tool: clusters

connector a single
~ cluster

(connected,
iInduced,
subgraph)

L polylog(n)
diameter

definition of clusters

1.

. nho. of connectors is <

{Ui}i=1.x IS a partition of V(G);
clusters are connected subgraphs,
induced by sets U;

. diameter of each cluster is < log®n

1
log; n

E(G)

Main tool: clusters

definition of clusters (cont.)
(when edges have weights w(e))

w(C)<; L W(EG)

0g, N
where C is a set of connectors.

We know how to compute clusters
In polylog time:
log.log.n logn log,%*'n

What is n?
IV(G)|=n.

Vertex version:

where
B — set of border vertices

1
2.

3.

How to use clusters to
approximate MDS ?

. find clusters {U1}1=1,_k

In each cluster U, in parallel,
find exact solution D;

return D, U...UuD,

It does not work ... why?

d

Bl

D| _Ip°

pprox ratio =1 +—

where

from def of clusters: |Bl<

D - output of the algorithm
D" - MDS(G)

B - set of border vertices
O(1) n

D | <1 1 n
+
log,n

but D* can be much smaller then n

How to use clusters to
approximate MDS ?

explanation of inequality-

D|_[D+BI_, , [B]
D
why |D|=<|D"|+|B| holds?
U
eD”
€B,

border vertices

because ...
IMDS (U ,)|<|U,nD")

D|=2.[MDS (U,)|<>.[(U,nD")

where
D - output of the algorithm
D* - MDS(G)
B - set of all border vertices
B; - set of border vertices of U;

To use clusters we need some
simple preprocessing

an example of simple preprocessing that
works for Maximum Matching:
G->G
1. IMM(G'")| > Q(|V(G")])
2. MM(G) = MM (G')

A simple preprocessing for MDS ???

. e.g. "add to the solution all vertices of
high degree (at the beginning)"

. It does not work !!!

high deg vert.\

A
MDS={a, c},
b¢MDS

high deg vert.
J

k -gadgets; MDS =2k; output =3k

10

MDS: algorithm

compute dom set D' s.t.
D'
D’

build "small clusters"

small cluster
eD' /

<log,n

contract small clusters
to get graph G'

O—O—0O

compute clusters in G' with
|IB'|<O(1)/1og>**'n |V(G")|

in each big cluster U; of G,

in parallel,

compute exact solution D;

return D, uU...uD,

11

preprocessing

MDS: approximation ratio

1 2
| a
|Dl sli +|B I*|21 + O ()
D D log;n

D — output of algorithm

B' — set of all small/ border clusters

D* - MDS(G)
[2] from def. of clusters:
, O (1 o001 «
B« p OW L
log, " 'n log,n

D' - logn aprox of MDS in G
[1] why |D|<|D*|+|B'| ??? P

Sum over all
clusters

IMDS (U ,)|<|(U;nD"uC,

> IMDS (U)< |(U;nD")uC,

D|=<|D7|+|B'|

B' - set of small/ border clusers of U,
C; - set of centers of clusters from B/,

[Bi|=ICil

12

MDS: approximation ratio

(U,nD)UC, dominates U; !!!

(big) cluster
small/ border cluster U :

€B', /

and its center

S ey
B N
N/ ‘ngﬁ 7 "'\
Smaﬁzluster ‘V’!.E-Q' "

13

B W

MCDS: algorithm

compute dom set D' s.t.
D'

[MDS (G)|

build "small clusters"

contract small clusters to get graph G'

compute clusters in G' with
|IB'|<O(1)/1og>**'n |V(G")|

In each big cluster U; of G,

in parallel,

compute exact solution D;

(this time MCDS ...)

<log,n

for every two big clusters U;and U,
that are connected,

find shortest path P; connecting D;
and D,

return D =(§JD1)U(1L’JJV (Pij))

14

MCDS: approximation ratio

D| /ID|, O(1) ¢, ,O(B'), O(F_; , O()
|D] logsn log2 log;n
D - output of algorithm;
D=Du,V(Py)

D - sum of MCDS in all clusters
B' - set of all small/ border clusters
D" - MCDS(G)

[3] again:
B <21 p 1«2 W s (6)« 2 pp°
109'2 109'2 10g2Il
[1] .U.V(Pij)sO(|B'|)sO<1>|D*
i) logsn

because paths P; have length <=3,
and their no. is <=0(|B'|)

15

MCDS: approximation ratio
[2] why |D|<|D*|+O(|B']) ???

1. no. of conn. comp.in U.ND"
may by large
2. no. of conn. comp. in (U.NnD")uC,
Is = |B'i|=|Ci|, where
B'; - set of small/ border clusers of U;

C; - set of centers of clusters from B
3. if kis a no. of conn. components in

(U,nD)uUC, then we can connect
these comp. adding vertices from
C~1CU1 :
where |C;

therefore:
(U,nD")uC,uC, is a CDS in U;

and:

>.[MCDS (U,)|<>.|U,nD"uC,uC,

ID|=|D’|+O0(|B|)

B' - set of all small/ border clusers

<O (k) "

16

MCDS: approximation ratio

bi lust
(big) cluster small cluster
U, \

small/
border cluster

center of

small, border - l %
cluster

eC,

17

log n -aprox of MDS

GreedyDS
1. D:= d, V1:=V; V2:=]
2. fori:=0 to logn-4 do
a) B:= { v: degi(v)> n/2'** }
b) vertices from V; dominated by B
jump form V; to V;
c) D:=D u B; delete vertices form B
3. D:=D uU V;j; return D

Why this algorithm computes
logn approx of MDS in planar G 7?7

Let D*= MDS(G)
we can prove: |B| < O(|D*|)
and sum over all logn iterations ...

Why Q(|B']) < [D*| ?

18

Generalization to
proper minor-closed
families of graphs

22?

19

Open problem: MWDS
(Weighted Dom Set)

77
77
77

20

