Distributed Approximation Algorithm for Minimum Dominating Set in Planar Graphs.

Model of computation

distributed,
synchronous, message passing model of computation
Synchronous <=>
computation proceed in rounds
In each round, each vertex:

1. send messages to its neighbours
2. receive messages from its neighbours
3. does local computation.

Communication graph:

Model of computation

- Our algorithm computes "something" in the communication graph (there is no other input graph).
. Vertices have different ID; $\mathbf{n}:=|\mathbf{V}(\mathbf{G})|$ is known.
- Randomization is not allowed.
- In a ball of radius \mathbf{t} it is possible to compute "everything" in time $\mathbf{O (t)}$ (unlimited computational power of a single vertex ...).

Our problem

to find approximation of
Minimum Dominating Set (MDS)
and Min Connected Dom Set (MCDS)

- in planar graph
- in distributed/ synchronous model of computation.
- in polylog(|V(G)|) time

Definition of MDS/ MCDS:

1. A set of vertices \mathbf{D} is a dominating set in graph \mathbf{G} if each vertex of \mathbf{G} is in \mathbf{D} or has a neighbour in \mathbf{D}.
2. $\operatorname{MDS}(\mathbf{G})$ is a dominating set of the smallest cardinality.
3. $\operatorname{MCDS}(\mathbf{G})$ is a dominating set \mathbf{D}
such that G[D] is connected, of the smallest cardinality.

Approximation ratio and time

our algorithm computes almost exact approximation of MDS/ MCDS problem ...
$\underset{\substack{\text { Approx. } \\ \text { ratio }}}{\underset{|D|}{ }{ }^{*} \mid} \leq 1+\frac{1}{\log \mathrm{n}}$
$\mathrm{n}=|\mathrm{V}(\mathrm{G})|$; G -comm. graph
D -output of algorithm
D* = MDS(G); optimal solution
in time $\mathrm{O}\left(\log _{2} \log _{2} \mathrm{n} \log ^{*} \mathrm{n} \log ^{6.5} \mathrm{n}\right)$
(time $=$ number of rounds)

Main tool: clusters

definition of clusters

1. $\left\{U_{i}\right\}_{i=1 . . k}$ is a partition of $V(G)$;
clusters are connected subgraphs, induced by sets U_{i}
2. diameter of each cluster is $<\log ^{\mathrm{d}} \mathrm{n}$
3. no. of connectors is $<\frac{1}{\log _{2}^{c} n}|\mathrm{E}(\mathrm{G})|$
$\begin{gathered}\text { where } \\ \kappa=\frac{1}{5}\end{gathered}=\frac{\mathrm{c} \mathrm{log}_{2} 3}{\log _{2} \frac{1}{1-\frac{9}{10} \kappa}} \approx 5.54 \mathrm{c}$

Main tool: clusters

definition of clusters (cont.)
(when edges have weights $\omega(\mathrm{e})$)

$$
\omega(\mathrm{C})<\frac{1}{\log _{2}^{\mathrm{c}} \mathrm{n}} \omega(\mathrm{E}(\mathrm{G}))
$$

where C is a set of connectors.
We know how to compute clusters in polylog time: $\log _{2} \log _{2} n \log ^{*} n \log _{2}{ }^{d+1} n$

What is n ?

$$
|\mathrm{V}(\mathrm{G})| \leq \mathrm{n} .
$$

Vertex version:

$$
|\mathrm{B}|<\frac{6}{\log _{2}^{\mathrm{c}} \mathrm{n}}|\mathrm{~V}(\mathrm{G})|
$$

where
B - set of border vertices

How to use clusters to approximate MDS ?

1. find clusters $\left\{\mathrm{U}_{\mathrm{i}}\right\}_{\mathrm{i}=1 . . \mathrm{k}}$
2. in each cluster U_{i}, in parallel, find exact solution D_{i}
3. return $\mathrm{D}_{1} \cup \ldots \cup \mathrm{D}_{\mathrm{k}}$

It does not work ... why?
approx ratio $\frac{|\mathrm{D}|}{\left|\mathrm{D}^{*}\right|} \leq \frac{\left|\mathrm{D}^{*}\right|+|\mathrm{B}|}{\left|\mathrm{D}^{*}\right|}=1+\frac{|\mathrm{B}|}{\left|\mathrm{D}^{*}\right|}$
where
D - output of the algorithm
D* - MDS(G)
B - set of border vertices
from def of clusters: $|\mathrm{B}| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}} \mathrm{n}$
approx ratio $\frac{|\mathrm{D}|}{\left|\mathrm{D}^{*}\right|} \leq 1+\frac{1}{\log _{2}^{\mathrm{c}} \mathrm{n}} \frac{\mathrm{n}}{\left|\mathrm{D}^{*}\right|}$
but D^{*} can be much smaller then n

How to use clusters to approximate MDS ?

explanation of inequality:

$$
\frac{|\mathrm{D}|}{\left|\mathrm{D}^{*}\right|} \leq \frac{\left|\mathrm{D}^{*}\right|+|\mathrm{B}|}{\left|\mathrm{D}^{*}\right|}=1+\frac{|\mathrm{B}|}{\left|\mathrm{D}^{*}\right|}
$$

why $|\mathrm{D}| \leq\left|\mathrm{D}^{*}\right|+|\mathrm{B}|$ holds?

because ...

$$
\left|\operatorname{MDS}\left(\mathrm{U}_{\mathrm{i}}\right)\right| \leq\left|\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{D}^{*}\right) \cup \mathrm{B}_{\mathrm{i}}\right|
$$

$$
|\mathrm{D}|=\sum_{\mathrm{i}}\left|\operatorname{MDS}\left(\mathrm{U}_{\mathrm{i}}\right)\right| \leq \sum_{\mathrm{i}}\left|\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{D}^{*}\right) \cup \mathrm{B}_{\mathrm{i}}\right|=\left|\mathrm{D}^{*}\right|+|\mathrm{B}|
$$

where
D - output of the algorithm
D* - MDS(G)
B - set of all border vertices
B_{i} - set of border vertices of U_{i}

To use clusters we need some simple preprocessing

an example of simple preprocessing that works for Maximum Matching:
\mathbf{G}-> \mathbf{G}^{\prime}

1. $\left|\mathrm{MM}\left(\mathrm{G}^{\prime}\right)\right|>\Omega\left(\left|\mathrm{V}\left(\mathrm{G}^{\prime}\right)\right|\right)$
2. $M M(G)=M M\left(G^{\prime}\right)$

A simple preprocessing for MDS ???

. e.g. "add to the solution all vertices of high degree (at the beginning)"
. it does not work !!!
high deg vert.
$\operatorname{MDS}=\{a, c\}$, b $\notin \mathrm{MDS}$

k -gadgets; $\mathrm{MDS}=2 \mathrm{k}$; output $=3 \mathrm{k}$

MDS: algorithm

1. compute dom set D^{\prime} s.t.

$$
\frac{\left|\mathrm{D}^{\prime}\right|}{\left|\mathrm{D}^{*}\right|} \leq \log _{2} \mathrm{n}
$$

2. build "small clusters"

3. contract small clusters to get graph G'

4. compute clusters in G^{\prime} with $\left|\mathrm{B}^{\prime}\right|<\mathrm{O}(1) / \log _{2}{ }^{\mathrm{c}+1} \mathrm{n}\left|\mathrm{V}\left(\mathrm{G}^{\prime}\right)\right|$
5. in each big cluster U_{i} of G, in parallel, compute exact solution D_{i}
6. return $\mathrm{D}_{1} \cup \ldots \cup \mathrm{D}_{\mathrm{k}}$

MDS: approximation ratio

$$
\frac{|\mathrm{D}|}{\left|\mathrm{D}^{*}\right|} \leq \sqrt{1}+\frac{\left|\mathrm{B}^{\prime}\right| \sqrt{2}}{\left|\mathrm{D}^{*}\right|} \leq 1+\frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}
$$

D - output of algorithm
B' - set of all small/ border clusters
$D^{*}-\operatorname{MDS}(G)$
[2] from def. of clusters:

$$
\left|\mathrm{B}^{\prime}\right| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}+1} \mathrm{n}}\left|\mathrm{D}^{\prime}\right| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}\left|\mathrm{D}^{*}\right|
$$

D^{\prime} - logn aprox of MDS in G Sum over all clusters
[1] why $|\mathrm{D}| \leq\left|\mathrm{D}^{*}\right|+\left|\mathrm{B}^{\prime}\right|$???

$$
\begin{gathered}
\left|\operatorname{MDS}\left(U_{i}\right)\right| \leq\left|\left(U_{i} \cap D^{*}\right) \cup C_{i}\right| \\
\sum_{i}\left|\operatorname{MDS}\left(U_{i}\right)\right| \leq \sum_{i}\left|\left(U_{i} \cap D^{*}\right) \cup C_{i}\right| \\
|D| \leq\left|D^{*}\right|+\left|B^{\prime}\right|
\end{gathered}
$$

$B_{i}{ }^{\prime}$ - set of small/ border clusers of U_{i}
C_{i} - set of centers of clusters from B_{i}
$\left|B_{i}^{\prime}\right|=\left|C_{i}\right|$

MDS: approximation ratio

 $\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{D}^{*}\right) \cup \mathrm{C}_{\mathrm{i}}$ dominates $\mathrm{U}_{\mathrm{i}}!!!$(big) cluster

MCDS: algorithm

1. compute dom set D^{\prime} s.t.

$$
\frac{\left|\mathrm{D}^{\prime}\right|}{|\operatorname{MDS}(\mathrm{G})|} \leq \log _{2} \mathrm{n}
$$

2. build "small clusters"
3. contract small clusters to get graph G^{\prime}
4. compute clusters in G^{\prime} with

$$
\left|\mathrm{B}^{\prime}\right|<\mathrm{O}(1) / \log _{2}{ }^{\mathrm{c}+1} \mathrm{n}\left|\mathrm{~V}\left(\mathrm{G}^{\prime}\right)\right|
$$

5. in each big cluster U_{i} of G, in parallel,
compute exact solution D_{i}
(this time MCDS ...)
6. for every two big clusters U_{i} and U_{j} that are connected,
find shortest path P_{ij} connecting D_{i} and D_{j}
7. return $\overline{\mathrm{D}}=\left({ }_{\mathrm{i}}^{\cup} \mathrm{D}_{\mathrm{i}}\right) \cup\left(\underset{\mathrm{i}, \mathrm{j}}{\cup} \mathrm{V}\left(\mathrm{P}_{\mathrm{ij}}\right)\right)$

MCDS: approximation ratio
$\frac{|\bar{D}|}{\left|D^{*}\right|} \leq \frac{\vee|D|}{\left|D^{*}\right|}+\frac{O(1)}{\log _{2}^{c} n} \leq 1+\frac{\mathrm{O}\left(\left|\mathrm{B}^{\prime}\right|\right)}{\left|\mathrm{D}^{*}\right|}+\frac{\mathrm{O}(1 \vee}{\log _{2}^{\mathrm{c}} \mathrm{n}} \leq 1+\frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}$
$\overline{\mathrm{D}}$ - output of algorithm;

$$
\overline{\mathrm{D}}=\mathrm{D} \cup_{\mathrm{i}, \mathrm{j}}^{\cup} \mathrm{V}\left(\mathrm{P}_{\mathrm{ij}}\right)
$$

D - sum of MCDS in all clusters
B' - set of all small/ border clusters
D* - MCDS(G)
[3] again:
$\left|\mathrm{B}^{\prime}\right| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c} 1} \mathrm{n}}\left|\mathrm{D}^{\prime}\right| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}|\mathrm{MDS}(\mathrm{G})| \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}\left|\mathrm{D}^{*}\right|$
[1] $\left|\underset{i, j}{\cup} V\left(P_{i j}\right)\right| \leq \mathrm{O}\left(\left|\mathrm{B}^{\prime}\right|\right) \leq \frac{\mathrm{O}(1)}{\log _{2}^{\mathrm{c}} \mathrm{n}}\left|\mathrm{D}^{*}\right|$
because paths $P_{i j}$ have length $<=3$, and their no. is $<=O\left(\left|\mathrm{~B}^{\prime}\right|\right)$

MCDS: approximation ratio

[2] why $|\mathrm{D}| \leq\left|\mathrm{D}^{*}\right|+\mathrm{O}\left(\left|\mathrm{B}^{\prime}\right|\right)$???

1. no. of conn. comp. in $U_{i} \cap D^{*}$ may by large
2. no. of conn. comp. in $\left(U_{i} \cap D^{*}\right) \cup C_{i}$ is $\leq\left|\mathrm{B}^{\prime}\right|=\mid \mathrm{C}_{\mathrm{i}}$, where
B_{i}^{\prime} - set of small/ border clusers of U_{i}
C_{i} - set of centers of clusters from B_{i}
3. if k is a no. of conn. components in
$\left(U_{i} \cap D^{*}\right) \cup C_{i}$ then we can connect these comp. adding vertices from $\tilde{\mathrm{C}_{i}} \subset \mathrm{U}_{\mathrm{i}}$,
where $\left|\tilde{\mathrm{C}}_{\mathrm{i}}\right| \leq \mathrm{O}(\mathrm{k})!!!$
therefore:
$\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{D}^{*}\right) \cup \mathrm{C}_{\mathrm{i}} \cup \tilde{C}_{\mathrm{i}}$ is a CDS in U_{i}
and:

$$
\begin{gathered}
\sum_{i}\left|\operatorname{MCDS}\left(\mathrm{U}_{\mathrm{i}}\right)\right| \leq \sum_{\mathrm{i}}\left|\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{D}^{*}\right) \cup \mathrm{C}_{\mathrm{i}} \cup \tilde{C}_{\mathrm{i}}\right| \\
|\mathrm{D}| \leq\left|\mathrm{D}^{*}\right|+\mathrm{O}\left(\left|\mathrm{~B}^{\prime}\right|\right)
\end{gathered}
$$

B^{\prime} - set of all small/ border clusers

MCDS: approximation ratio

$\log \mathbf{n}$-aprox of MDS

GreedyDS

1. $\mathrm{D}:=\varnothing ; \mathrm{V}_{1}:=\mathrm{V} ; \mathrm{V}_{2}:=\varnothing$
2. for $i:=0$ to logn-4 do
a) $\mathrm{B}:=\left\{\mathrm{v}: \operatorname{deg}_{1}(\mathrm{v})>\mathrm{n} / 2^{\mathrm{i}+1}\right\}$
b) vertices from V_{1} dominated by B jump form V_{1} to V_{2}
c) $\mathrm{D}:=\mathrm{D} \cup \mathrm{B}$; delete vertices form B
3. $\mathrm{D}:=\mathrm{D} \cup \mathrm{V}_{1}$; return D

Why this algorithm computes
logn approx of MDS in planar G ???
Let $\mathrm{D}^{*}=\mathrm{MDS}(\mathrm{G})$
we can prove: $\left|\mathrm{B}^{i}\right|<\mathrm{O}\left(\left|D^{*}\right|\right)$
and sum over all logn iterations ...
Why $\Omega\left(\left|B^{i}\right|\right)<\left|D^{*}\right|$?

Generalization to proper minor-closed families of graphs

???

Open problem: MWDS (Weighted Dom Set)

???
???
???

