
Distributed
Approximation
Algorithm for

Minimum Dominating
Set

in Planar Graphs.

1

Model of computation
distributed,

synchronous,
message passing

model of computation

Synchronous <=>
computation proceed in rounds

In each round, each vertex:
 1. send messages to its neighbours
 2. receive messages from its

neighbours
 3. does local computation.

Communication
graph:

2

processor

communication link

message

Model of computation
● Our algorithm computes "something"

in the communication graph (there is
no other input graph).

● Vertices have different ID;
n:=|V(G)| is known.

● Randomization is not allowed.

● In a ball of radius t it is possible to
compute "everything" in time
O(t) (unlimited computational power
of a single vertex ...).

3

Our problem
to find approximation of
Minimum Dominating Set (MDS)
and Min Connected Dom Set (MCDS)
● in planar graph
● in distributed/ synchronous

model of computation.
● in polylog(|V(G)|) time

Definition of MDS/ MCDS:
1. A set of vertices D is a dominating

set in graph G if each vertex of G
is in D or has a neighbour in D.

2.MDS(G) is a dominating set
of the smallest cardinality.

3.MCDS(G) is a dominating set D
such that G[D] is connected,
of the smallest cardinality.

4

Approximation ratio
and time

our algorithm computes
almost exact approximation

of MDS/ MCDS problem ...
∣D∣
∣D *∣

≤1 1
logn

n =|V(G)|; G -comm. graph
D -output of algorithm
D* =MDS(G); optimal solution

in time O(log2log2n log*n log6.5n)
(time = number of rounds)

5

Approx.
ratio

Main tool: clusters

definition of clusters
1. {Ui}i=1..k is a partition of V(G);

clusters are connected subgraphs,
induced by sets Ui

2. diameter of each cluster is < logdn

3. no. of connectors is <
1

log2
c n

∣E G ∣

where d =
c log23

log2
1

1 − 9
10

≈5.54c

6

a single
cluster

(connected,
induced,

subgraph)

connector

polylog(n)
diameter

Ui

=1
5

Main tool: clusters
definition of clusters (cont.)
(when edges have weights e)

C 1
log2

c n
E G

where C is a set of connectors.

We know how to compute clusters
in polylog time:

log2log2n log*n log2
d+1n

What is n?
 |V(G)|≤n.

Vertex version:

∣B∣ 6
log2

c n
∣V G ∣

where
B – set of border vertices

7

How to use clusters to
approximate MDS ?

1. find clusters {Ui}i=1..k

2. in each cluster Ui, in parallel,
find exact solution Di

3. return D 1 ∪...∪D k

It does not work ... why?

approx ratio
∣D∣
∣D *∣

≤
∣D *∣∣B∣

∣D *∣
=1

∣B∣
∣D *∣

where
D - output of the algorithm
D* - MDS(G)
B - set of border vertices

from def of clusters: ∣B∣≤ O 1
log2

c n
n

approx ratio
∣D∣
∣D *∣

≤1 1
log2

c n
n

∣D *∣
but D* can be much smaller then n

8

How to use clusters to
approximate MDS ?

explanation of inequality:

∣D∣
∣D *∣

≤
∣D *∣∣B∣

∣D *∣
=1

∣B∣
∣D *∣

why |D|≤|D*|+|B| holds?

because ...
∣MDS U i ∣≤∣U i∩D *∪B i∣

∣D∣=∑
i
∣MDS U i ∣≤∑

i
∣U i∩D *∪B i∣=∣D *∣∣B∣

where
D - output of the algorithm
D* - MDS(G)
B - set of all border vertices
Bi - set of border vertices of Ui

9

border vertices

U i

∈B i

∈D *

To use clusters we need some
simple preprocessing

an example of simple preprocessing that
works for Maximum Matching:

G -> G'
1. |MM(G')| > Ω(|V(G')|)
2. MM(G) = MM (G')

A simple preprocessing for MDS ???
• e.g. "add to the solution all vertices of

high degree (at the beginning)"
• it does not work !!!

 MDS={a, c},
b∉MDS

 k -gadgets; MDS =2k; output =3k

10

high deg vert. high deg vert.

ba c

MDS: algorithm
1. compute dom set D' s.t.

∣D '∣
∣D *∣

≤log2n

2. build "small clusters"

3. contract small clusters
to get graph G'

4. compute clusters in G' with
|B'|<O(1)/log2

c+1n |V(G')|
5. in each big cluster Ui of G,

in parallel,
compute exact solution Di

6. return D 1 ∪...∪D k

11

small cluster

pr
ep

ro
ce

ss
in

g

∈D '

MDS: approximation ratio

∣D∣
∣D *∣

≤1
∣B '∣
∣D *∣

≤1
O 1
log2

c n
D – output of algorithm
B' – set of all small/ border clusters
D* - MDS(G)

[2] from def. of clusters:

∣B '∣≤ O 1
log2

c1n
∣D '∣≤ O 1

log2
c n

∣D *∣

D' - logn aprox of MDS in G

[1] why |D|≤|D*|+|B'| ???

∣MDS U i ∣≤∣U i∩D *∪C i∣
∑

i
∣MDS U i ∣≤∑

i
∣U i∩D *∪C i∣

|D|≤|D*|+|B'|
B'i - set of small/ border clusers of Ui

Ci - set of centers of clusters from B'i
 |B'i|=|Ci|

12

Sum over all
clusters

1 2

MDS: approximation ratio
U i∩D *∪C i dominates Ui !!!

13

small/ border cluster

and its center

(big) cluster

small cluster

∈B ' i

∈C i

U i

D *∋

MCDS: algorithm
1. compute dom set D' s.t.

∣D '∣
∣MDS G ∣

≤log2n

2. build "small clusters"
3. contract small clusters to get graph G'
4. compute clusters in G' with

|B'|<O(1)/log2
c+1n |V(G')|

5. in each big cluster Ui of G,
in parallel,
compute exact solution Di

(this time MCDS ...)
6. for every two big clusters Ui and Uj

that are connected,
find shortest path Pij connecting Di
and Dj

7. return D=∪ i D i∪∪i , j
V P ij

14

MCDS: approximation ratio

∣D∣
∣D *∣

≤
∣D∣
∣D *∣

 O 1
log2

c n
≤1 O ∣B '∣

∣D *∣
 O 1

log2
c n

≤1 O 1
log2

c n
D - output of algorithm;

D=D∪∪
i , j V P ij

 D - sum of MCDS in all clusters
 B' - set of all small/ border clusters
 D* - MCDS(G)

[3] again:

∣B '∣≤ O 1
log2

c1n
∣D '∣≤ O 1

log2
c n

∣MDS G ∣≤ O 1
log2

c n
∣D *∣

[1] ∣∪i , j
V P ij ∣≤O ∣B '∣≤ O 1

log2
c n

∣D *∣

because paths Pij have length <=3,
and their no. is <=O(|B'|)

15

21 3

MCDS: approximation ratio

[2] why |D|≤|D*|+O(|B'|) ???

1. no. of conn. comp. in U i∩D *

may by large
2. no. of conn. comp. in U i∩D *∪C i

is ≤ |B'i|=|Ci|, where
 B'i - set of small/ border clusers of Ui

 Ci - set of centers of clusters from B'i
3. if k is a no. of conn. components in

U i∩D *∪C i then we can connect
these comp. adding vertices from
C i⊂U i ,

where ∣ C i∣≤O k !!!
therefore:

U i∩D *∪C i∪ C i is a CDS in Ui
and:

∑
i
∣MCDS U i ∣≤∑

i
∣U i∩D *∪C i∪ C i∣

|D|≤|D*|+O(|B'|)

 B' - set of all small/ border clusers

16

MCDS: approximation ratio

17

center of
small, border

cluster

small/
border cluster

(big) cluster
small cluster

U i

D *∋

∈B ' i

∈C i

log n -aprox of MDS
GreedyDS
 1. D:= ø; V1:=V; V2:= ø
 2. for i:=0 to logn-4 do

 a) B:= { v: deg1(v)> n/2i+1 }
 b) vertices from V1 dominated by B

jump form V1 to V2

 c) D:=D ∪ B; delete vertices form B
 3. D:= D ∪ V1; return D

Why this algorithm computes
logn approx of MDS in planar G ???

Let D*= MDS(G)
we can prove: |Bi| < O(|D*|)
and sum over all logn iterations ...

Why Ω(|Bi|) < |D*| ?

18

Generalization to
proper minor-closed

families of graphs
???

19

Open problem: MWDS
(Weighted Dom Set)

???
???
???

20

