Javalto DL LanguageMapping
Specification

September 2003
Version 1.3
formal/03-09-04

OBJECT MANAGEMENT GROUP

An Adopted Specification of theObject M anagement Group, Inc.

Copyright © 1997, 1998, 1999 BEA Systems, Inc.

Copyright © 1995, 1996 BNR Europe Ltd.

Copyright © 1998, Borland International

Copyright © 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright © 1995, 1996 Expersoft Corporation

Copyright © 1996, 1997 FUJTSU LIMITED

Copyright © 1996 Genesis Development Corporation

Copyright © 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright © 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright © 1998 Inprise Corporation

Copyright © 1996, 1999 International Business Machines Corporation
Copyright © 1995, 1996 ICL, plc

Copyright © 1995, 1996 IONA Technologies, Ltd.

Copyright © 1996, 1997 Micro Focus Limited

Copyright © 1991, 1992, 1995, 1996 NCR Corporation

Copyright © 1995, 1996 Novell USG

Copyright © 1991,1992, 1995, 1996 by Object Design, Inc.

Copyright © 2002 Object Management Group, Inc.

Copyright © 1996 Siemens Nixdorf Informationssysteme AG
Copyright © 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright © 1995, 1996 SunSoft, Inc.

Copyright © 1996 Sybase, Inc.

Copyright © 1998 Telefonica Investigacion y Desarrollo S.A. Unipersonal
Copyright © 1996 Visua Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specificationsis for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. Thislimited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OM G specifications may require use
of aninvention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regul ations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD FA.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulationsand
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBANet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified
Modeling Language™, The UML Cubelogo™, MOF™, CWM ™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification

purposes only, and may be trademarks of their respective owners.
COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partialy matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/l ssue.

OBJECT MANAGEMENT GROUP

Contents

1. Javalanguageto|IDL Mapping

1.1 Overview

1.2 TheRMI/IDL Subset of Java
Overview of Conforming RMI/IDL Types. . ..
Primitive Types.
RMI/IDL Remote Interfaces.
RMI/IDL Value Types
RMI/IDL Arrays. . ..o cii i
RMI/IDL Exception Types.
CORBA Object Reference Types..........
IDL Entity Types,

1.3 ThelDL Mapping
OVEIVIEW ..ot
Mapping Java Namesto IDL Names
Mappings for Primitive Types
Mapping for RMI/IDL Remote Interfaces
Mapping for RMI/IDL Value Types........
Mapping for RMI/IDL Arrays
Mapping RMI/IDL Exceptions.
Mapping CORBA Object Reference Types . ..
Mapping IDL Entity Types.

121
122
123
1.24
1.25
126
127
1.28

131
132
133
1.34
135
1.36
137
1.38
1.39
1.3.10

1311
1.3.12

Mapping for Non-conforming Classes and

Interfaces i
Mapping Abstract Interfaces.
Mapping Implementation Classes.

1.4 Run-Time I ssues

September 2003 Javato IDL Language Mapping, v1.3

Contents

1.4.1 Subclassesof Value Objects. 1-31
1.4.2 Locating Stubs for Remote References. 1-32
143 Narowing...........ccuiiiiniinnnn.n. 1-32
1.4.4 Allocating Tiesfor Remote Values. 1-32
145 WideCharacter Support 1-33
146 LocatingStubsandTies.................. 1-33
1.4.7 Mapping RMI Exceptionsto CORBA
Exceptions i, 1-34
1.4.8 Mapping CORBA System Exceptionsto
RMI Exceptions 1-35
149 CodeDownloading...................... 1-36
1.4.10 Custom MarshalingFormat 1-39
1411 TAG_RMI_CUSTOM_MAX_
STREAM_FORMAT Component. 1-40
1.4.12 RMICustomMaxStreamFormat Service Context 1-41
1.4.13 Marshaling RMI/IDL Arrays 1-41
1.4.14 CreatingORB Instances.................. 1-41
1.4.15 RuntimeLimitations. 1-41
15 Portability Interfaces 1-42
151 Portability APIs 1-43
152 Generatedclasses..................coou.. 1-54
15.3 Replaceability of APl Implementations 1-59
1.6 Application Programming Interfaces................. 1-62
16.1 PortableRemoteObject 1-62
1.7 Generated IDL FileStructure. 1-64
1.7.1 TheJavaDefinition 1-66
1.7.2 The Generated OMG IDL Definition........ 1-67

ii Javato IDL Language Mapping, v1.3 September 2003

About This Document

Preface

Under the terms of the collaboration between OMG and The Open Group, this document
is a candidate for adoption by The Open Group, as an Open Group Technical Standard.
The collaboration between OMG and The Open Group ensures joint review and cohesive
support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 600 members, including information system vendors, software devel opers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to develop a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the con-
ceptual infrastructure upon which all OMG specifications are based. More information is

available at http://www.omg.org/.

The Open Group

September 2003

The Open Group, avendor and technology-neutral consortium, is committed to delivering
greater business efficiency by bringing together buyers and suppliers of information tech-
nology to lower the time, cost, and risks associated with integrating new technol ogy
across the enterprise.

Javato IDL Language Mapping, v1.3 iii

The mission of The Open Group isto drive the creation of boundaryless information flow
achieved by:

® Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

® Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

® Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

® Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suitesincludes tests for CORBA, the Single UNIX Specification,
CDE, Matif, Linux, LDAPR, POSIX.1, POSIX.2, POSIX Realtime, Sockets, UNIX, XPG4,
XNFS, XTI, and X11. The Open Group test tools are essential for proper devel opment and
maintenance of standards-based products, ensuring conformance of products to industry-
standard APIs, applications portability, and interoperability. In-depth testing identifies
defects at the earliest possible point in the devel opment cycle, saving costsin devel opment
and quality assurance.

More information is available at http://www.opengroup.org/ .

About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information
for the several languages. Each language is described in a separate stand-al one volume.

Alignment with CORBA
This language mapping is aligned with CORBA, v3.0.

Associated Documents

The CORBA documentation set includes the following books:

» Object Management Architecture Guide defines the OMG'’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of
OMG, such as how standards are proposed, evaluated, and accepted.

* CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

» CORBAservices. Common Object Services Specification contains specifications
for the Object Services.

iv Javato IDL Language Mapping, v1.3 September 2003

+ CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collectsinformation for each book in the documentation set by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its member-
ship, evaluating the responses. Specifications are adopted as standards only when repre-
sentatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in Post-
Script and PDF format. Please note the OMG address and tel ephone numbers below:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

September 2003

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means usersaren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if avendor supports C++,
their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the CORBA/IIOP Specification (The Common
Object Request Broker: Architecture and Specification), Interworking Architecture
chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specificationsis divided into core and
component-like specifications. The CORBA specifications are divided into these volumes:

1. The CORBA/IIOP Specification (The Common Object Request Broker: Architecture
and Specification), which includes the following chapters:

* CORBA Core, as specified in Chapters 1-11

* CORBA Interoperability, as specified in Chapters 12-16

» CORBA Interworking, as specified in Chapters 17-21

* CORBA Quality of Service, as specified in Chapters 22-24

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

Javato IDL Mapping: Definition of CORBA Compliance %

» Ada Mapping to OMG IDL

» C Mapping to OMG IDL

o C++ Mapping to OMG IDL

» COBOL Mapping to OMG IDL
» IDL Script Mapping

* IDL to Java Mapping

» Java Mapping to OMG IDL

» Lisp Mapping to OMG IDL

» Python Mapping to OMG IDL

» Smalltalk Mapping to OMG IDL

Typographical Conventions

Acknowledgements

vi

The type styles shown below are used in this document to distinguish programming state-
ments from ordinary English. However, these conventions are not used in tables or section
headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax elements.
Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name
of adocument, specification, or other publication.

The following companies submitted parts of the specifications that were approved by the
Object Management Group to become the IDL/Java L anguage Mapping specification:

* BEA Systems, Inc.

« IBM Corporation

» IONA Technologies Ltd.
« Visigenic Software, Inc.

Javato IDL Language Mapping, v1.3 September 2003

Java" Languageto|DL Mapping 1

Note — The Java Language to IDL Mapping specification is aligned with CORBA
version 3.0.2. This specification is based on OMG document ptc/2003-01-17.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“The RMI/IDL Subset of Java’ 1-2
“The IDL Mapping” 1-6
“Run-Time |ssues’ 1-31
“Portability Interfaces’ 1-42
“Application Programming Interfaces’ 1-62
“Generated IDL File Structure” 1-64

1.1 Overview

The Java distributed programming community has until now been forced to choose
between two different mechanisms for distributed programming, Java Remote Method
Invocation (RMI) and OMG IDL.

September 2003 Javato IDL Mapping, v1.3 1-1

The RMI style of distributed programming has proven extremely popular because it is
easy to use and avoids the need for Java programmers to learn a separate interface
definition language. However, RMI lacks interoperability with other languages and it is
not currently supported over standard protocols.

The mapping from Java RMI to OMG IDL and 11OP described in this chapter is
intended to unify the ease-of-programming of Java RMI with support for cross-
language operation (through OMG IDL) and support for standard protocols (through
I1OP).

To encourage convergence between the RMI and CORBA programming communities,
it is important to define a solution that is both fully compatible with current RMI
semantics and fully compatible with OMG IDL, I10OP, and the CORBA object model.

The subset of Java that meets these goals is referred to as RMI/IDL.

1.2 TheRMI/IDL Subset of Java

This section describes the subset of Java RMI that is mapped to IDL and can run over
GIOP.

1.2.1 Overview of Conforming RMI/IDL Types

A conforming RMI/IDL type is a Java type whose values may be transmitted across an
RMI/IDL remote interface at run-time.

A Java data type is a conforming RMI/IDL type if it is:
® one of the Java primitive types (see Section 1.2.2, “Primitive Types,” on page 1-2).

® aconforming remote interface (as defined in Section 1.2.3, “RMI/IDL Remote
Interfaces,” on page 1-3).

® aconforming value type (as defined in Section 1.2.4, “RMI/IDL Vaue Types,” on

page 1-4).

® an array of conforming RMI/IDL types (see Section 1.2.5, “RMI/IDL Arrays,” on
page 1-5).

® aconforming exception type (see Section 1.2.6, “RMI/IDL Exception Types,” on
page 1-5).

® aconforming CORBA object reference type (see Section 1.2.7, “CORBA Object
Reference Types,” on page 1-6).

® aconforming IDL entity type (see Section 1.2.8, “IDL Entity Types,” on page 1-6).

1.2.2 Primitive Types

All the standard Java primitive types are supported as part of RMI/IDL. These are:

® voi d, bool ean, byte, char, short,int,long,float, double

Javato IDL Mapping, v1.3 September 2003

September 2003

1.2.3 RMI/IDL Remote Interfaces

An RMI remote interface defines a Java interface that can be invoked remotely. A Java
interface is a conforming RMI/IDL remote interface if:

1
2.

The interface is or inherits from j ava. r m . Renot e either directly or indirectly.

All methods in the interface are defined to throw

j ava. rm . Renot eExcepti on or asuperclass of

j ava. rm . Renot eExcept i on. Throughout this section, references to methods
in the interface include methods in any inherited interfaces.

There are no restrictions on method arguments and result types. However at run-
time, the actual values passed as arguments or returned as results must be
conforming RMI/IDL types (see Section 1.2.1, “Overview of Conforming RMI/IDL
Types,” on page 1-2). In addition, for each RMI/IDL remote interface reference, the
actual value passed or returned must be either a stub object or a remote interface
implementation object (see Section 1.2.3.1, “ Stubs and remote implementation
classes,” on page 1-4).

All checked exception classes used in method declarations (other than
j ava. rm . Renpt eExcept i on and its subclasses) are conforming RMI/IDL
exception types (see Section 1.2.6, “RMI/IDL Exception Types,” on page 1-5).%

Method names may be overloaded. However, when an interface directly inherits
from several base interfaces, it is forbidden for there to be method name conflicts
between the inherited interfaces. This outlaws the case where an interface A defines
amethod “foo,” an interface B also defines a method “foo,” and an interface C tries
to inherit from both A and B.

Constant definitions in the form of interface variables are permitted. The constant
value must be a compile-time constant of one of the RMI/IDL primitive types or
String.

Method and constant names must not cause name collisions when mapped to IDL
(see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,” on

page 1-10).

The following is an example of a conforming RMI/IDL interface definition:

/'l Java
public interface Wnbat extends java.rm .Remte {

String BLEAT _CONSTANT = “bl eat”;
bool ean bl eat (Wnbat ot her)
throws java.rm . Renpt eExcepti on;

1.Because unchecked exception classesandj ava. r m . Renot eExcept i on andits

subclasses are not mapped to IDL exceptions, it isnot necessary for them to be conforming
RMI/IDL exceptiontypes.

Javato IDL Mapping: The RMI/IDL Subset of Java 1-3

1-4

1231

}

While the following is an example of a non-conforming RMI/IDL interface:

/1 Java

/1 Illegallnterface fails to extend Renpte!!

public interface Illegallnterface {
/1 illegal Exceptions fails to throw RenpteExcepti on.
void illegal Exceptions();

Subs and remote implementation classes

At run time, when a reference to an RMI/IDL remote interface is passed across a
remote interface, the class of the actual object that is passed must be either a stub class
or a remote implementation class.

A stub classis a class that has been created (normally by tools) to manage a remote
object reference.

A remote implementation classis a class that acts as the server side implementation for
a given RMI/IDL remote interface.

A given remote implementation class may implement several distinct RMI/IDL
interfaces.

1.2.4 RMI/IDL Value Types

An RMI/IDL value type represents a class whose values can be moved between
systems. So rather than transmitting a reference between systems, the actual state of
the object is transmitted between systems. This requires that the receiving system have
an analogous class that can be used to hold the received value.

Value types may be passed as arguments or results of remote methods, or as fields
within other objects that are passed remotely.

A Java class is a conforming RMI/IDL value type if the following applies:

1. Theclassmust implement thej ava. i 0. Seri al i zabl e interface, either directly
or indirectly, and must be serializable at run-time. It may serialize references to
other RMI/IDL types, including value types and remote interfaces.

2. The class may implement j ava. i 0. Ext er nal i zabl e. (This indicates it
overrides some of the standard serialization machinery.)

3. If the class is a non-static inner class, then its containing class must also be a
conforming RMI/IDL value type.

4. A value type must not either directly or indirectly implement the
j ava. rm . Renot e interface. (If this were allowed, then there would be potential
confusion between value types and remote interface references.)

Javato IDL Mapping, v1.3 September 2003

September 2003

1241

A value type may implement any interface except for j ava. rm . Renot e.
There are no restrictions on the method signatures for a value type.
There are no restrictions on st at i ¢ fields for a value type.

There are no restrictions on t r ansi ent fields for a value type.

© © N o u

Method, constant, and field names must not cause name collisions when mapped to
IDL (see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,”
on page 1-10).

Here is an example of a conforming RMI/IDL value type:

/1 Java

public class Point inplenments java.io.Serializable {
public final static int CONSTANT _FOO = 3+3;
private int x;
private int vy;

public Point(int x, y) { ... }
public int getX() { ... }
public int getY() { ... }

The Java String Type

Thej ava. |l ang. Stri ng classisaconforming RMI/IDL value type following these
rules. Note, however, that St ri ng is handled specially when mapping Javato OMG
IDL (see Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21).

1.2.5 RMI/IDL Arrays

Arrays of any conforming RMI/IDL type are also conforming RMI/IDL types. So
int[] andString[][][] areconforming RMI/IDL types. Similarly if Wonbat is
a conforming RMI/IDL interface type, then Wonrbat [] is a conforming RMI/IDL
type.

1.2.6 RMI/IDL Exception Types

An RMI/IDL exception type is a checked exception class (as defined by the Java
Language Specification). Since checked exception classes extend

j ava. |l ang. Throwabl e, which implementsj ava.i o. Seri alizabl e,itis
unnecessary for an RMI/IDL exception class to directly implement

java.io. Serializable.

A typeis a conforming RMI/IDL exception if the class:
® isachecked exception class.

® meets the requirements for RMI/IDL value types defined in Section 1.2.4,
“RMI/IDL Value Types,” on page 1-4.

Javato IDL Mapping: The RMI/IDL Subset of Java 1-5

1-6

Here's an example of a conforming RMI/IDL exception type:

/'l Java
public class Manmal Overl oad extends Manmmal Exception {

public Mammal Overl oad(String nessage) {
super (nessage) ;

}

1.2.7 CORBA Object Reference Types

A conforming CORBA object reference type is either

the Java interface or g. ong. CORBA. Obj ect, or

a Java interface that extends or g. ong. CORBA. Obj ect directly or indirectly and
conformsto the rules specified in the Java Language Mapping (i.e., could have been
generated by applying the mapping to an OMG IDL definition).

1.2.8 IDL Entity Types

A Java class is a conforming IDL entity type if it extends

org. ong. CORBA. portabl e. | DLEnt ity and conforms to the rules specified in
the Java Language Mapping (i.e., could have been generated by applying the mapping
to an OMG IDL definition) and is not an OMG IDL user exception.

1.3 ThelDL Mapping

1.3.1 Overview

This section defines the mapping between RMI/IDL data types and OMG IDL. It
includes general rules for mapping Java names to OMG IDL and mappings for:

Primitive types

RMI/IDL remote interfaces
RMI/IDL value types
RMI/IDL arrays

RMI/IDL exception types
CORBA object reference types
IDL entity types

Java types that are referenced in RMI/IDL remote interfaces or inherited by
RMI/IDL value types, but which are not themselves conforming RMI/IDL types.

RMI/IDL abstract interfaces

RMI/IDL implementation classes

Javato IDL Mapping, v1.3 September 2003

September 2003

1.3.1.1 Summary of Special Case Mappings

Some standard Java class and interface types benefit from special case mappings to
specific CORBA types. These are described in the appropriate sections below, but for
convenience Table 1-1 summarizes these mappings:

Table 1-1 Specia Case Mappings

Java OMG IDL

J ava.l ang. o] ect :;java::lang::_Object

java.lang. String ::CORBA::WStringValue or wstring®
java.l ang. d ass ;rjavax::rmi::CORBA::ClassDesc
java.io. Serializable ::java::io::Serializable

java.io. Externalizable :rjava::io::Externalizable

java.rm . Renot e :;java::rmi::Remote

or g. ong. CORBA. Obj ect Object

1. String constants are mapped differently than String variables. See Section 1.3.5.11,
“Mapping for java.lang.String,” on page 1-21.

1.3.2 Mapping Java Names to IDL Names

1321

1322

1.3.23

In general, each Java name is mapped to an equivalent OMG IDL name. However,
there are some exceptions when the Java name is not a legal identifier in OMG IDL.

Mapping packages to modules

We map Java package names to OMG IDL modules. Each Java package becomes a
separate OMG IDL module. Packages within packages are represented as modules
within modules.

So a Java package a. b. ¢ would turn into an OMG IDL module ::a::b::c.

Java namesthat clash with IDL keywords

For Java names that collide with OMG IDL keywords, the Java names are mapped to
OMG IDL by adding a leading underscore. So the Java name oneway is mapped to
the OMG IDL identifier _oneway (an escaped identifier).

Java names with |eading under scores

For Java names that have leading underscores, the leading underscore is replaced with
“J".So_fredismappedtoJ fred.

Javato IDL Mapping: The IDL Mapping 1-7

1-8

1324

1.3.25

1.3.2.6

Java nameswithillegal IDL identifier characters

Given the current lack of support for Unicode in OMG IDL, we define a simple name
mangling scheme to support the mapping of Java identifiers to OMG IDL identifiers.

For Javaidentifiers that contain illegal OMG IDL identifier characters such as‘$' or
Unicode characters outside of ASCII, any such illegal characters are replaced by “U”
followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value. So, the Java name a$b is mapped to aU0024b and x\ u03bCy is mapped to
xUO3BCy.

Namesfor inner classes

When mapping names for Java inner classes, a composite name is formed by
concatenating the name for the outer class, two underscores, and the name of the inner
class. The corrections for illegal OMG IDL identifiers described above are then

applied.

For example, an inner class Fr ed inside a class Bert will get mapped to an OMG
IDL name of Bert__Fred.

Overloaded method names

If a Java RMI/IDL method isn’'t overloaded, then the same method name is used in
OMG IDL as was used in Java.

Given the absence of overloaded methods in current OMG IDL, we define a simple
name mangling for overloaded methods.

Note that a method may be uniquely defined in a base interface (and therefore its name
will not be mangled in that interface) and then be overloaded in a derived interface (in
which case the name will be mangled in the derived interface).

For overloaded RMI/IDL methods, the mangled OMG IDL name is formed by taking
the Java method name and then appending two underscores, followed by each of the
fully qualified OMG IDL types of the arguments (removing any leading “::" and
replacing embedded “::” with “_") separated by two underscores. Any spaces (such as
in the OMG IDL type long long) are replaced with underscores, and any leading
underscores in OMG IDL escaped identifiers are removed.

For example, the four overloaded Java methods:

void hello();

void hello(int x, a.b.c vy, int z);
void hello(int z[]);

voi d hel |l o(Obj ect 0);

are mapped to the OMG IDL methods:

void hello__ ();
void hello__long__a b_c__long(in long x, in ::a::b::cy, in long 2);

Javato IDL Mapping, v1.3 September 2003

September 2003

13.2.7

1.3.2.8

1.3.29

void hello__org_omg_boxedRMI_seql long(
in ::org::omg::boxedRMI::seql_long x);
void hello__java_lang_Object(in ::java::lang::_Object 0);

Namesdiffering only in case

While Java supports case-sensitive names, OMG IDL does not. Therefore, a general
name mangling rule is provided to allow unique OMG IDL identifiers to be generated
for Java names that differ only in case.

To simplify the mapping, the use of Java package names differing only in case is not
supported. Nor do we support the use of class or interface names within the same
package that differ only in case. Both of these are treated as errors.

For other case-sensitive collisions, the rule is that if two (or more) names that need to
be defined in the same OMG IDL name scope differ only in case, then a mangled name
is generated consisting of the original name followed by an underscore, followed by an
underscore separated list of decimal indices into the string, where the indices identify
all the upper case characters in the original string. Indices are zero based.

Thus if a Java remote interface has methods j ack, Jack, and j AcK these names are
mapped to jack_, Jack_0, and jJAcK_1 3.

Method namesthat collide with other names

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between method names and constant or field names. This is because Java

constants and fields can have the same names as methods, but OMG IDL constants and
fields cannot. The following rules are used to avoid such name collisionsin OMG IDL.:

® Method names are mapped unchanged (subject to other mangling rules).

® Javaconstant or field names whose mapped name collides with the mapped name of
a Java method (or would collide if the Java method were mapped to OMG IDL) are
mapped with an additional trailing underscore.

For example, if a Java class has both a constant f oo and a method f 0o, the OMG IDL
method is called foo (if it is mapped) and the OMG IDL constant is called foo_
(whether or not the method foo is mapped).

Container namesthat clash with their members

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between a container name and members of the container. This is because a
Java member can have the same name as its container, but OMG IDL members cannot.
The following rules are used to avoid such name collisions in OMG IDL:

® Container names are mapped unchanged (subject to other mangling rules).

® Java method, constant, or field names whose mapped name collides with the
mapped name of their Java container are mapped with an additional trailing
underscore.

Javato IDL Mapping: The IDL Mapping 1-9

1-10

1.3.2.10

For example, if a remote Java interface Foo has a method f 0o, the OMG IDL
interface is called Foo and the OMG IDL operation is called foo_.

Names that would cause OMG IDL name collisions

If the name mappings defined in this specification would produce OMG IDL method,
constant, field, or attribute names that are not unique within their declared scope, this
is treated as an error. For example, if a Java remote interface has methods f oo() ,
foo(int x),andfoo__|ong(), the corresponding OMG IDL names would be
foo_ , foo__long, and foo__long, which is not legal OMG IDL.

1.3.3 Mappings for Primitive Types

Here are the OMG IDL mappings for the Java primitive types:

Java OMG IDL
voi d void

bool ean boolean
char wchar

byt e octet
short short

i nt long

| ong long long
fl oat float
doubl e double

The mappings for the Javavoi d, bool ean, short,int, | ong,fl oat, and
doubl e types are straightforward as they have exact OMG IDL analogues.

The 8 bit signed Java type byt e is mapped to the 8 bit unsigned OMG IDL type
octet. The mapping is bit-for-bit so that Java byte value “-1” is transmitted as GIOP
octet “OxFF,” and the GIOP octet “OxFF" is mapped back to the Java byte value “-1.”
Thus when using this mapping, we will preserve full value and sign information when
using RMI/IDL between a Java client and a Java server over GIOP.

The 16 bit Java Unicode char type is mapped to the OMG IDL wchar type.

1.3.4 Mapping for RMI/IDL Remote Interfaces

An RMI/IDL remote interface is mapped into an OMG IDL interface with the
corresponding name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on
page 1-7) in the OMG IDL module corresponding to the Java interface's package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Javato IDL Mapping, v1.3 September 2003

September 2003

1341

1.34.2

1.3.4.3

Soecial casefor java.rmi.Remote

As a special case, any explicit use of j ava. r m . Renot e as a parameter, result, or
field is mapped to the OMG IDL type ::java::rmi::Remote, which is defined as
follows:

/I IDL
module java {
module rmi {
typedef Object Remote;

b
b

All RMI/IDL remote interfaces inherit from j ava. r m . Renot e. Thisinheritance is
represented in the RMI to OMG IDL mapping as the implicit inheritance of IDL
interface types from CORBA::Object.

Inherited interfaces

Each inherited interface (other than j ava. r mi . Renot €) in the Javainterface is
represented by an equivalent inherited interface in the OMG IDL interface. If the
inherited interface isan RMI/IDL remote interface, then it is mapped as specified here.
If not, it is mapped as specified in Section 1.3.11, “Mapping Abstract Interfaces,” on
page 1-30.

Property accessor methods

Methods that follow the JavaBeans” design patterns for simple read-write properties
or simple read-only properties are mapped to OMG IDL interface attributes. No special
mapping is done for indexed properties or write-only properties.

Read-Wkite properties

If an RMI/IDL remote interface has a pair of methods get <nane> and set <nanme>
where

® the get <name> method has no arguments,
® the set <name> method has a single argument and a void return type,

® the result type of the get <nanme> method is the same as the argument type of the
set <nanme> method,

® get <nane> and set <name> do not throw any checked exceptions except for
j ava. rm . Renot eExcept i on and its subclasses,

then this is mapped to an OMG IDL read-write attribute where the attribute has the
OMG IDL type corresponding to the set <name> method's argument type.

Read-only properties
If there is a get <name> method that

Javato IDL Mapping: The IDL Mapping 1-11

1-12

® has no arguments,
® has a non-void return type,

® does not throw any checked exceptions except for
java. rm . Renot eExcept i on and its subclasses,

but if there is no corresponding set <nanme> method that satisfies the rules defined in
“Read-Write properties” on page 1-11, then the get <nane> method is mapped to a
read-only OMG IDL attribute whose type is obtained by mapping the method's return

type.

Boolean properties

For boolean properties an i s<nanme> method may take the place of the get <nane>
method. For example, a pair of methods, as shown below, define a read-write attribute
foo.

bool ean i sFoo() throws java.rm . Renot eExcepti on;
voi d set Foo(bool ean b) throws java.rm .Renpt eException;

Thei s<nanme> method may be provided instead of a get <nanme> method, or it may
be provided in addition to a get <nane> method. In either case, if thei s<nane>
method is present for a boolean property then i s<nane> will be mapped to the OMG
IDL attribute <name> and get <nane> (if present) will be mapped to an OMG IDL
operation get <name>. For example, the following Java methods:

/'l Java

bool ean getBar () ;

bool ean isBar();

voi d set Bar (bool ean x);

are mapped to the following OMG IDL:

/I IDL
boolean getBar();
attribute boolean bar;

Attribute names

The JavaBeans design pattern for property names is that the property name is obtained
from the method name(s) by:

® Extracting the characters after the initial “get,” “is,” or “set” of the method name.

® Converting the first character to lower case unless both the first and second
characters are upper case.

So the get Foo method implies a “foo” property, the set X method implies an “x”
property, and the get URL method implies a “URL" property.

Javato IDL Mapping, v1.3 September 2003

1

The OMG IDL attribute name is obtained by taking the JavaBeans property name and
applying the normal mapping rules (see Section 1.3.2, “Mapping Java Names to IDL
Names,” on page 1-7). However, if this OMG IDL attribute name conflicts with an
OMG IDL method name, then an extra pair of underscores“ " is added to the end of
the attribute name to attempt to disambiguate it.

1.3.4.4 Methods

Except for property accessors (see Section 1.3.4.3, “Property accessor methods,” on
page 1-11), each method in the interface is mapped to an OMG IDL method where:

1. The OMG IDL method name is generated as described in Section 1.3.2.6,
“Overloaded method names,” on page 1-8.

2. The Javareturn type is mapped to the corresponding OMG IDL return type.

3. Each Java argument is mapped to an OMG IDL in parameter with the
corresponding OMG IDL type.

4., The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument names.?

5. Each declared RMI/IDL exception (other than j ava. r m . Renot eExcepti on
and its subclasses) is mapped to the corresponding OMG IDL exception.

6. j ava. rm . Renpt eExcept i on and its subclasses, and unchecked exception
classes, are assumed to be mapped to the implicit CORBA system exception, and
are therefore not explicitly declared in OMG IDL.

1.3.4.5 Constants

Compile-time constants (“publ i c final static” fieldswith compile-time
constant values) for primitive typesand St r i ngs are mapped to similarly named IDL
constants in the target interface with the same values, except for byte constants which
are mapped bit-for-bit. For example, -1 maps to 255. Individual wstring and wchar
character values may need to be escaped as defined in the OMG IDL specification.

2. Thisisnot always possible, since Javamethod argument names do not appear in the .class
file output from thejavac compiler.

September 2003 Javato IDL Mapping: ThelDL Mapping 1-13

1-14

1.3.4.6

1.3.4.7

Repository ID

A #pragma ID is generated to assign each mapped OMG IDL interface type an RMI
Hashed format repository ID derived from the Java interface name using the rules
specified in The Common Object Request Broker Architecture: Core Specification,
Interface Repository chapter, with a hash code of zero and no SUID. See

Section 1.3.5.7, “Repository ID,” on page 1-18 for more information.

An example

Here is an example of an RMI/IDL remote interface:

/'l Java
package al pha. bravo;
public interface Wnbat extends java.rm . Renote,
onega. Wal | aby {
String BLEAT_CONSTANT = “bleat”;
void chirp(int x) throws RenoteException;
void buzz() throws RenoteException, onega. Mamrmal Overl oad;
int getFoo() throws RenoteException;
voi d set Foo(int x) throws RenoteException;
String getURL() throws RenoteException;
void eat() throws Exception;
void drink() throws RenoteException,
java.rm . NoSuchCbj ect Excepti on;

}
that gets mapped to the following IDL:

/I IDL
module alpha {
module bravo {
interface Wombat: ::omega::Wallaby {
const wstring BLEAT_CONSTANT = “bleat”;
void chirp(in long argO0);
void buzz() raises (::omega::MammalOverloadEx);
attribute long foo;
readonly attribute ::CORBA::WStringValue URL;
void eat() raises (::java::lang::Ex);

void drink();
|3
#pragma ID Wombat “RMl:alpha.bravo.Wombat:0000000000000000”
|3
h

Note that St ri ng constants are mapped differently than St ri ng variables. See
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21.

Javato IDL Mapping, v1.3 September 2003

September 2003

1.3.5 Mapping for RMI/IDL Value Types

1351

1.35.2

1353

This section covers the general mapping for RMI/IDL value types, including inner
classes and conforming exception classes that are not RMI/IDL exception types.
However, note that there are special case mappings for j ava. | ang. Stri ng (see
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21) and

java. | ang. d ass (see Section 1.3.5.12, “Mapping for java.lang.Class,” on
page 1-21).

RMI/IDL value classes that implement or g. ong. CORBA. port abl e. I DLEntity
and or g. ong. CORBA. port abl e. Val ueBase directly or indirectly are not
mapped to OMG IDL, because these Java classes correspond to existing OMG IDL
value types that were mapped to Java using the OMG IDL to Java mapping. Instead,
the original OMG IDL definitions are used.

Exception classes that implement or g. ong. CORBA. port abl e. | DLEnti ty may
appear only in Javat hr ows clauses. Thisis because they correspond to existing OMG
IDL exception types, and OMG IDL exception types may appear only in IDL
raises clauses.

Each RMI/IDL value class (except for those mapped from OMG IDL using the OMG
IDL to Java mapping) is mapped to an OMG IDL value type with the corresponding
OMG IDL name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on

page 1-7) in the OMG IDL module corresponding to the Java class's package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Inherited base class

If the RMI/IDL class extends some base class (other than j ava. | ang. Obj ect),
then this inheritance is represented by having the OMG IDL value type inherit from an
IDL value type corresponding to the base class. See “module org {” on page 1-27 for
details.

Inherited interfaces

Each inherited interface (other than j ava. i 0. Seri al i zabl e and

j ava. i o. Ext ernal i zabl e) in the Java class is represented by an equivalent
inherited or supported type in the mapped OMG IDL type. If the inherited interface is
mapped to an OMG IDL abstract valuetype, then it is inherited by the mapped OMG
IDL type. If the inherited interface is mapped to an OMG IDL abstract interface, then
it is supported by the mapped OMG IDL type. It is not possible for the inherited
interface to be mapped to a non-abstract OMG IDL interface, because RMI/IDL value
types cannot implement RMI/IDL remote interfaces (see Section 1.2.4, “RMI/IDL
Value Types,” on page 1-4). See “module org {" on page 1-27 for details of how
inherited interfaces are mapped.

Methods

It is not required that methods in RMI/IDL value classes be mapped into OMG IDL.

Javato IDL Mapping: The IDL Mapping 1-15

1-16

1354

Thisis partly due to concern that an automatic mapping would have a spaghetti effect,
where referencing a single value type would result in mappings for methods that would
pull in other RMI/IDL types, that would pull in other value types.

In addition, many of the methods in common Java value types cannot be mapped
usefully to OMG IDL (because they reference non RMI/IDL types) or to other
languages.

However, there may be cases where it is useful to map value type methods to OMG
IDL and tools may choose to support options to map methods. In those cases, each
mapped method in a Java value type is mapped to an OMG IDL method using the rules
specified in Section 1.3.4.3, “Property accessor methods,” on page 1-11 and

Section 1.3.4.4, “Methods,” on page 1-13.

Java private methods are not mapped to OMG IDL.

Constructors

Aswith methods, it is not required that RMI1/IDL value type constructors be mapped to
OMG IDL. However, in those cases where constructors are mapped to OMG IDL
(including the default constructor, if any), we require that the following mapping be
used:

Each mapped constructor in a Java value type is mapped to an OMG IDL initializer
where:

1. If thereisasingle IDL initializer, its name is create. If there are multiple IDL
initializers, this name is mangled as specified in Section 1.3.2.6, “ Overloaded
method names,” on page 1-8.

2. Each Java argument is mapped to an IDL in parameter with the corresponding I1DL
type.

3. The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument names.

4. Each declared RMI/IDL exception type (other than
j ava. rm . Renot eExcept i on and its subclasses) is mapped to the
corresponding OMG IDL exception.

5. java. rm . Renpot eExcept i on and its subclasses, and unchecked exception
classes, are not explicitly declared in OMG IDL.

Java private constructors are not mapped to OMG IDL.

For example, the Java classes:

/'l Java

public class foo inplenents java.io. Serializable {
foo(int x);

}

public class bar inplenments java.io. Serializable {

Javato IDL Mapping, v1.3 September 2003

September 2003

1355

1.35.6

bar (int x);
bar (char vy);
}

would be mapped to the OMG IDL valuetypes:

/I DL
valuetype foo {
factory create(in long x);
b
valuetype bar {
factory create__long(in long x);
factory create__wchar(in long y);

13

Constants

Compile-time constants (“publ i ¢ final static” fieldswith compile-time
constant values) for primitive typesand St r i ngs are mapped to similarly named IDL
constants in the target value type with the same values. Individual wstring and wchar
character values may need to be escaped as defined in the OMG IDL specification.

Data

If the classimplementsj ava. i 0. Ext er nal i zabl e, then the serialized state of the
Java class is treated as an opaque type, and it is defined as an OMG IDL “custom
valuetype.” Java non-static non-transient publ i ¢ fields are mapped to OMG IDL
public data members, and other Java fields are not mapped.

If the class does not implement j ava. i 0. Ext er nal i zabl e but does have a

wri t eObj ect method, or extends such a class directly or indirectly, then it is mapped
to an OMG IDL “custom valuetype” using the rules for mapping data members
specified below. An additional IDL custom valuetype in the module
;;org::omg::customRMI is aso generated to assist with marshaling and unmarshaling
instances of the class. See Section 1.3.5.8, “ Secondary custom valuetype,” on page 1-19
for details. In this case, and for Java classes that implement

j ava. i o. Ext ernal i zabl e, all the semantics of

java.io. Obj ect Qut put St reamand j ava. i 0. Obj ect | nput St ream
supported by RMI over JRMP are supported over I1OP.

If the class does not implement | ava. i 0. Ext er nal i zabl e and has a declared
private static final field namedseri al Persi stentFi el ds of type
java.io. Qbj ect Streanti el d[], then the mapping of data fieldsto OMG IDL
is governed by the value of that field. If the Java classhasnowr i t eCbj ect method,
then each Qbj ect St r eanFi el d instance in the array must correspond to a declared
field in the class with the same name and the same declared type. For each

oj ect St r eanfFi el d instance osf in the array, thereisan OMG IDL data member
with name equal to osf . get Name() and type equal to the standard mapping of the

Javato IDL Mapping: The IDL Mapping 1-17

1-18

1.35.7

Java type osf . get Type() . get Name() to OMG IDL. If the corresponding field
exists in the Java class and is declared publ i c, then the OMG IDL field is also
declared public; otherwise, the OMG IDL field is declared private.

If the class does not implement j ava. i 0. Ext er nal i zabl e and does not have a
declared private static final field named seri al Per si st ent Fi el ds of
typej ava. i 0. Obj ect St r eantFi el d[], then each non-static non-transient field of
the Java class is mapped to a corresponding OMG IDL data member with the same
name, with the corresponding OMG IDL type. Java publ i ¢ fields are mapped to
OMG IDL public data members. Non-public Java fields are mapped to OMG IDL
private data members.

The following rules apply to the ordering of fieldsin an OMG IDL value type mapped
from Java.

® All non-constant fields whose Java type is a primitive precede al other non-
constant fields.

® The non-constant primitive fields are ordered by sorting their Java field names in
increasing order. The sort compares the field name strings lexicographically. The
comparison is based on the Unicode value of each character in the strings.

® The non-constant non-primitive fields are ordered by sorting their Java field names
in the same way as non-constant primitive fields.

Repository ID

To allow reliable detection of version mismatches, a#pragma ID is generated to
assign each value type a specific repository 1D string with a specific version string.

The syntax of the repository ID is the standard OMG RMI Hashed format, with an
initial “RMI:” followed by the Java class name, followed by a hash code string,
followed optionally by a serialization version UID string.

For Javaidentifiers that contain illegal OMG IDL identifier characters such as‘$' or
Unicode characters outside of 1SO Latin 1, any such illegal characters are replaced by
“\U” followed by the 4 hexadecimal characters (in upper case) representing the
Unicode value. The use of a“\” islegal within a repository ID and it allows areliable
demangling from a repository 1D back to the Java class name.

For example, the Javatypej ava. uti | . Hasht abl e would be mapped to the OMG
IDL type ::java::util::Hashtable with arepository ID of
“RMl:java.util.Hashtable:C03324C0OEA357270:13BBOF25214AE4B8”.

Similarly, a Java class a. x\ u03bCy might be mapped to the OMG IDL type
::a::xU03BCy with repository 1D
“RMI:a.x\U0O3BCy:0123456789ABCDEF:123456789ABCDEFO0".

Javato IDL Mapping, v1.3 September 2003

1.3.5.8 Secondary custom valuetype

In addition to the primary mapping described above, an RMI/IDL value type
containing awr i t eObj ect method is mapped to a secondary IDL custom valuetype.
The module name for this valuetype is formed by taking the
;rorg::omg::customRMI prefix and then adding the primary mapped type's module
name. The name of the secondary valuetype is the same as the name of the primary
IDL custom value type to which the RMI/IDL value type was mapped. The secondary
valuetype has no inheritance, data members, methods, or initializers. It has a#pragma
ID specifying a repository 1D formed by taking the repository ID of the primary
custom valuetype and prefixing the Java package name with

"org. ong. cust omRM ." The secondary custom valuetype represents the enclosure
of writeCbject datathat iswritten to the serialization stream when the primary
custom valuetype or any of its subclasses is serialized using format version 2, as
described in item 1d of Section 1.4.10, “Custom Marshaling Format,” on page 1-39.

For IDL custom marshaling and unmarshaling of the primary mapped IDL valuetype,
the marshal and unmarshal methods can call write_Value() and read_Value() to
write and read the nested valuetype enclosure. This will cause the marshal and
unmarshal methods of the secondary mapped IDL valuetype to be called to write and
read the custom serialized data.

1.3.5.9 Examplewithout writeObject
The RMI/IDL value type:

/1 Java
package al pha. bravo;
public class Hedgehog ext ends Wart hog
i mpl ements java.io.Serializable {
public final static short MAX WARTS = 12;
private int |ength;
prot ect ed bool ean foobah;

i nt height;

public int size;

public void snuffle() { ... }
public int getLength() { ... }

}
gets mapped to the IDL value type:

/I IDL

module alpha {

module bravo {

valuetype Hedgehog: ::alpha::bravo::Warthog {

const short MAX_WARTS = 12;
private boolean foobabh;
private long height;
private long length_;
public long size;

September 2003 Javato IDL Mapping: ThelDL Mapping 1-19

/I mapping of methods, attributes, and initializers is optional
void snuffle();
readonly attribute long length();
factory create();
|3
#pragma ID Hedgehog
“RMl:alpha.bravo.Hedge-
hog:12345678ABCDEF00:0123456789ABCDEF"
|3
|3

1.3.5.10 Examplewith writeObject
The RMI/IDL value type:

/'l Java
package al pha. bravo;
public class Kangaroo extends Wl | aby
i npl ements java.io.Serializable {
private int |ength;

private Kangaroo(int length) { ... }

private void witeGObject(java.io.ObjectQutputStreams)
{ ...}

public int hop() { ... }

}
gets mapped to the IDL value types:

//'1DL
module alpha{
module bravo {
custom valuetype Kangaroo: ::alpha::bravo::Wallaby {
private long length;
/I mapping of methods shown below is optional
long hop();
¥
#pragma ID Kangaroo
“RMl:alpha.bravo.Kanga-
roo:87654321ABCDEF01:9876543210FEDCBA”
¥
¥

module org {

module omg {

module customRMI {

module alpha{

module bravo {
custom valuetype Kangaroo {};

#pragma ID Kangaroo
"RMI:org.omg.customRMl.alpha.bravo.Kangaro00:87654321ABCDEFO01.:

1-20 Javato IDL Mapping, v1.3 September 2003

September 2003

13511

1.3.5.12

9876543210FEDCBA"

}
}
}.
}
}

’

Mapping for java.lang.String

When used as a parameter type, return type, or data member, the Java St ri ng typeis
mapped to the type ::CORBA::WStringValue. However when mapping Java
St ri ng constant definitions, aJava St ri ng is simply mapped to awstring.

::CORBA::WStringValue is a standard type that is part of the CORBA module. It is
defined as

valuetype WStringValue wstring;

which is semantically equivalent to:

valuetype WStringValue {
public wstring data;

b

Mapping for java.lang.Class

When used as a parameter type, return type, or data member, the Java Cl ass typeis
mapped to the OMG IDL type ::;javax::rmi::CORBA::ClassDesc. This OMG IDL
type is the result of mapping the following Java class to OMG IDL:

/1 Java
package javax.rm . CORBA;
public class ClassDesc inplenents java.io. Serializable {
public String repid;
public String codebase; // space-separated list of URLs
static final |ong serial VersionU D
= -3477057297839810709L

1.3.6 Mapping for RMI/IDL Arrays

An RMI/IDL array is mapped to a “boxed” value type containing an IDL sequence. We
use the syntax “valuetype xyz foo” as a shorthand for defining a value type named
“xyz” that contains a single field of type “foo.”

The module for each such value type is determined by the IDL type of the array
element. For multi-dimensional arrays, this is the type of the innermost array element,
after all the dimensions are resolved.

Javato IDL Mapping: The IDL Mapping 1-21

1-22

1.3.6.1

1.3.6.2

Primitive OMG IDL types such as long, boolean, etc. are mapped directly into the
::org::omg::boxedRMI module. For other types, a module name is formed by taking
the ::org::omg::boxedRMI prefix and then adding the type's existing module name
to identify a sub-module. So the type ::a::b::c is mapped into the module
;:org::omg::boxedRMI::a::b.

For each “boxed” value type generated for a Java array, a#pragma ID is generated to
specify an RMI Hashed format repository 1D for the IDL type.

The OMG IDL value type name within the module is formed by prefixing the OMG
IDL element type name with “seq<n>_" where <n> is the number of dimensions of
the array. Any spaces (such as in the OMG IDL type long long) are replaced with
underscores.

Some example value definitions resulting from Java arrays:

bool ean[] =>in the module ::org::omg::boxedRMI the definition:
valuetype seql_boolean sequence<boolean>;

I ong[] =>inthe module ::org::omg::boxedRMI the definition:
valuetype seql_long_long sequence<long long>;

a. b.] =>inthe module :;:org::omg::boxedRMlI::a::b the definition:
valuetype seql C sequence<:a::b::C>;

X.Y[]1[] =>inthe module ::org::omg::boxedRMI::x the definitions:
valuetype seql_Y sequence<::x::Y>;
valuetype seq2_Y sequence<seql_Y>;

Preventing redefinitions of boxed sequence types

Each generated boxed sequence type must be protected against multiple definitions and
there are various ways in which this could be accomplished. For example, each
generated boxed sequence type could be wrapped in an #ifndef and #endif pair where
the tag of the #ifndef is the fully scoped name of the sequence value type, replacing
the leading ‘::" with two underbars, replacing each inner *::" with one underbar, and
adding two underbar characters at the end. The #ifndef would be followed by a
#define of the tag, followed by the sequence definition, followed by an #endif.

A definition for a sequence of boolean that uses this approach would be wrapped in a
preambl e of

#ifndef __org_omg_boxedRMI_seql boolean_

#define __org_omg_boxedRMI_seql boolean_

and would be followed by an
#endif

Array example

Here's a more complete example. The Java definition:

Javato IDL Mapping, v1.3 September 2003

September 2003

/'l Java

package al pha. bravo

public class Charlie inplenents java.io.Serializable {
publ i c onmega. Dol phin fins[];

}

would result in the following OMG IDL definition:

// IDL

#ifndef __org_omg_boxedRMI_omega_seql Dolphin__

#define __org_omg_boxedRMI_omega_seql Dolphin__

module org {

module omg {

module boxedRMI {

module omega {
valuetype seql_Dolphin sequence<::omega::Dolphin>;

#pragma ID seql_Dolphin
“RMI:[Lomega.Dolphin;:ABCDEF0123456789:01ABCDEF23456789"

’

}
}
}.
13

endif

module alpha{
module bravo {
valuetype Charlie {
public ::org::omg::boxedRMI::omega::seql Dolphin fins;
|3
#pragma ID Charlie
“RMl:alpha.bravo.Charlie:0123456789ABCDEF:ABCDEF9876543210"
¥
|3

1.3.7 Mapping RMI/IDL Exceptions

OMG IDL does not allow subclassing of exception types. By contrast Java
programmers tend to make heavy use of exception subclassing, and the Java type
system is used to distinguish different flavors of exceptions at run time. It is very
common for a Java interface to say it raises a fairly generic exception (such as
java.io. | OExcept i on) but for implementations to throw more specific sub-types
(suchasjava.i o. | nterruptedl OExcepti on) and for clients to use the Java

i nst anceof operator to check for specific subtypes. In addition, RMI/IDL
exceptions can be passed as normal value types, whereas OMG IDL exceptions can
only be used in raises clauses.

This mismatch of exception styles makes the mapping of RMI/IDL exception types to
OMG IDL problematic.

Javato IDL Mapping: The IDL Mapping 1-23

1-24

1371

1.3.7.2

To allow full support for subclassing when communicating Java to Java we use a
mapping where an RMI/IDL exception type is mapped to both a specific OMG IDL
exception and to an OMG IDL value type that allows subclassing. The OMG IDL
exception has a single field that holds the corresponding value object.

This solution allows RMI/IDL to support the normal idiomatic use of Java exceptions,
while still being correctly mappable into OMG IDL.

The DL valuetype

Each RMI/IDL exception type is mapped to an OMG IDL value type in the OMG IDL
module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The value type's name is formed by
taking the RMI/IDL exception name and applying the normal corrections for illegal
IDL names (see Section 1.3.2, “Mapping Java Names to IDL Names,” on page 1-7).

The OMG IDL value type inherits from an OMG IDL parent value type that
corresponds to the base class of the RMI/IDL exception class. If an RMI/IDL
exception type Fr ed extends Ber t , then its OMG IDL value type Fred will inherit
Bert.

The mapping of the fields, methods, constants, and inherited interfaces to the OMG
IDL value type follow the same rules defined for other RMI/IDL value typesin
Section 1.3.5.2, “Inherited interfaces,” on page 1-15 through Section 1.3.5.7,
“Repository ID,” on page 1-18.

ThelDL exception

Each RMI/IDL exception type is also mapped to an OMG IDL exception in the OMG
IDL module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The OMG IDL exception name is
formed from the Java exception name by

® removing any trailing “Except i on” suffix.
® adding an “Ex” at the end of the name.

® applying the normal corrections for illegal OMG IDL names (see Section 1.3.2,
“Mapping Java Names to IDL Names,” on page 1-7).

If applying the above rules yields the same OMG IDL name for more than one Java
exception name (e.g., there are Java exception names f oo and f ooExcept i on,
which both map to the OMG IDL name fooEX), then this is treated as an error.

For example:

java.lang. |l 1 egal AccessExcepti on is mapped to
:;javai:lang::lllegalAccessEx

al pha. bravo. Foo is mapped to ::alpha::bravo::FooEx

This OMG IDL exception name can then be used in the raises clause of OMG IDL
method definitions.

Javato IDL Mapping, v1.3 September 2003

1

The OMG IDL exception type is defined with a single data member named value that
has the type of the associated value object.

1.3.7.3 Mapping Referencesto RMI/IDL Exceptions

Whenever an RMI/IDL exception is used in aJavat hr ows clause, it is mapped to a
use of the corresponding OMG IDL exception type in the OMG IDL raises clause.

Whenever an RMI/IDL exception is used as a data field or as a method argument, it is
mapped to the corresponding OMG IDL value type.

1.3.7.4 Example

The Java RMI/IDL definitions:

/1 Java

package onega;

public class Fruitbat Excepti on extends Manmmal Exception {
public Fruitbat Exception(String nmessage, int count) ({

}
public int getCount() { ... }

private int count;

}

public interface Thrower extends java.rni.Renote {
voi d doThrowFrui tbat () throws Fruitbat Exception,
Renot eExcept i on;
Frui t bat Excepti on get Last Excepti on()
t hrows Renot eExcepti on;

}
are mapped to OMG IDL as:

/I IDL
module omega {
valuetype FruitbatException: ::omega::MammalException {
private long count_;
/I mapping of attributes shown below is optional
readonly attribute long count();
|3
#pragma ID FruitbatException
“RMIl:omega/FruitbatException:1234567899775511:3344556645678901"

exception FruitbatEx {
FruitbatException value;

b

interface Thrower {
void doThrowFruitbat() raises (FruitbatEx);

September 2003 Javato IDL Mapping: ThelDL Mapping 1-25

1-26

readonly attribute FruitbatException lastException;
|3
#pragma ID Thrower “RMIl:omega.Thrower:0000000000000000”
|3

1.3.8 Mapping CORBA Object Reference Types

A CORBA object reference type is mapped directly to its corresponding OMG IDL
interface or to Object if itisor g. ong. CORBA. (bj ect .

1.3.9 Mapping IDL Entity Types

An IDL entity type that is not a CORBA object reference type is mapped to a “boxed”
value type containing the IDL entity type, except as specified in Section 1.3.5,
“Mapping for RMI/IDL Value Types,” on page 1-15 and Section 1.3.10, “Mapping for
Non-conforming Classes and Interfaces,” on page 1-27.

The containing module for the boxed type is determined by the IDL entity type's
containing module. A module name is formed by taking the ::org::omg::boxedIDL
prefix and appending the IDL entity type's fully scoped IDL module name. A boxed
value type corresponding to the IDL entity type is defined within this module. The
name of the value type is the same as the name of the IDL definition it is boxing.

For example, assume we have the following IDL and the Java class that results from
applying the forward mapping:

// IDL
module hello {
struct world {
short x;
|3
¥

/'l Java
package hell o;
public final class world inplenents
org.ong. CORBA. portable. I DLEntity {

Now assume that hel | 0. wor | d is used as an argument to a method or as a member
of an RMI/IDL value type. The Javaclass hel | 0. wor | d is mapped as follows:

module org {
module omg {
module boxedIDL {
module hello {
valuetype world ::hello::world;
#pragma ID world “RMI:hello.world:1234567890ABCDEF”

b

Javato IDL Mapping, v1.3 September 2003

September 2003

b
b
b

The exact mechanism by which the IDL for ::hello::world is created is a tools issue
and is not specified.

These generated types must be protected against multiple definitions. See
Section 1.3.6.1, “Preventing redefinitions of boxed sequence types,” on page 1-22 for
an example of an approach that could be used.

The IDL entity typesor g. ong. CORBA. Any and or g. ong. CORBA. TypeCode are
mapped as follows:

module org {
module omg {
module boxedIDL {
module CORBA {
valuetype _Any any;
#pragma ID _Any “RMI:org.omg.CORBA.Any:0000000000000000"
|3

b
b
b

module org {

module omg {

module boxedIDL {

module CORBA {
valuetype _TypeCode ::CORBA::TypeCode;

#pragma ID _TypeCode
“RMIl:org.omg.CORBA.TypeCode:0000000000000000”

[I)

1.3.10 Mapping for Non-conforming Classes and Interfaces

In addition to generating OMG IDL for each conforming RMI/IDL type, OMG IDL
definitions are also required for each Java class or interface that

® jisinherited (either directly or indirectly) by another Javatype that has been mapped
to OMG IDL.

® jsspecified as an argument type or as aresult type to an RMI/IDL remote interface
method.

® has been mapped to a data member of an OMG IDL value type.

Javato IDL Mapping: The IDL Mapping 1-27

1-28

1.3.10.1

1.3.10.2

Each such Java class or interface (except for interfaces that extend

org. ong. CORBA. portabl e. | DLEnt ity directly or indirectly) is mapped to an
OMG IDL type with the corresponding name (see Section 1.3.2, “Mapping Java
Names to IDL Names,” on page 1-7) in the OMG IDL module corresponding to the
Java type's package name (see Section 1.3.2.1, “Mapping packages to modules,” on

page 1-7).

Java interfaces that extend or g. ong. CORBA. port abl e. | DLEnt i ty directly or
indirectly are not mapped to OMG IDL, because these Java interfaces correspond to
existing OMG IDL interfaces that were mapped to Java using the OMG IDL to Java

mapping.

Non-conforming Java classes are mapped to OMG IDL abstract value types with no
data members. Non-conforming Java interfaces are mapped as follows:

* Javainterfaces whose method definitions (including inherited method definitions)
all throw j ava. r mi . Renpt eExcept i on or a superclass of
java. rm . Renot eExcept i on are RMI/IDL abstract interfaces. They are
mapped to OMG IDL abstract interfaces as described in Section 1.3.11, “Mapping
Abstract Interfaces,” on page 1-30.

® All other Java interfaces are mapped to OMG IDL abstract value types with no data
members.

java.io.Serializable and java.io.Externalizable

As a special case, any uses of j ava. i 0. Seri al i zabl e or
java.i o. Ext ernal i zabl e asaparameter, result, or field are mapped to the OMG
IDL types::java::io::Serializable and ::java::io::Externalizable respectively.

These OMG IDL types are defined as follows:

// IDL

module java{

module io {
typedef any Serializable;
typedef any Externalizable;

’

b

Mapping for java.lang.Object

The Javatypej ava. | ang. Qbj ect is mapped to the OMG IDL type
:;java::lang::_Object, which is defined as follows:

// IDL
module java{
module lang {
typedef any _Object;

Javato IDL Mapping, v1.3 September 2003

Thisisused when j ava. | ang. Obj ect is specified as the type of a parameter,
result, or field. All Java classes implicitly inherit fromj ava. | ang. Obj ect , but this
implicit inheritance is not exposed as part of the RMI to OMG IDL mapping.

1.3.10.3 Inherited interfaces

Each inherited Java class or interface (other than j ava. i 0. Seri al i zabl e and
java.i o. External i zabl e) in the Java type is represented by an equivalent
inherited value type or abstract interface type in OMG IDL.

1.3.10.4 Methods and constants

The methods and constants in these classes and interfaces are mapped as specified for
value classes in Section 1.3.4.4, “Methods,” on page 1-13 and Section 1.3.4.5,
“Constants,” on page 1-13.

1.3.10.5 Examples

The following non-conforming Java types:

/1 Java

package al pha. bravo

public interface Manmal {
public int getSize();

}

public class Pol arBear {
private int |ength;
public int weight;

public PolarBear(int Iength, int weight) { ... }
public int getSize() { ... }
public int getWeight() { ... }

}
get mapped to the OMG IDL value types:

// IDL
module alpha{
module bravo {
abstract valuetype Mammal {

|3
abstract valuetype PolarBear {
|3

¥

¥

September 2003 Javato IDL Mapping: ThelDL Mapping 1-29

1-30

1.3.11 Mapping Abstract Interfaces

1311

1.3.11.2

1.3.11.3

Java interfaces that do not extend j ava. r mi . Renot e directly or indirectly and
whose method definitions (including inherited method definitions) all throw

j ava. rm . Renot eExcept i on or a superclass of

java. rm . Renot eExcept i on are mapped to OMG IDL abstract interfaces. Java
interfaces that do not extend j ava. r mi . Renot e directly or indirectly and have no
methods are also mapped to OMG IDL abstract interfaces.

Inherited interfaces

Each inherited Java interface in the Java type is represented by an equivalent inherited
abstract interface in the OMG IDL type.

Methods and constants

Methods and constants are mapped according to the rules specified in Section 1.3.4.3,
“Property accessor methods,” on page 1-11, Section 1.3.4.4, “Methods,” on page 1-13,
and Section 1.3.4.5, “Constants,” on page 1-13.

Examples

The following Java type:

/1 Java
package al pha. bravo;
public interface Bear {
public int getSize() throws
j ava. rm . Renot eExcepti on;

}
gets mapped to the OMG IDL type:

// IDL
module alpha{
module bravo {

abstract interface Bear {

readonly attribute long size();

|3
#pragma ID Bear “RMIl:alpha.bravo.Bear:0000000000000000”
¥
¥

1.3.12 Mapping Implementation Classes

In general, mapping RMI implementation classes to OMG IDL is not needed.
However, if a given RMI implementation class implements multiple distinct RMI/IDL
remote interfaces, then it is necessary to generate an OMG IDL type that represents the
unification of the distinct RMI/IDL types.

Javato IDL Mapping, v1.3 September 2003

Any such composite RMI/IDL implementation class is mapped into an OMG IDL
interface with the corresponding name (see Section 1.3.2, “Mapping Java Names to
IDL Names,” on page 1-7) in the OMG IDL module corresponding to the Java class's
package name (see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Each inherited RMI/IDL remote interface (other than j ava. r m . Renot €) inherited
by the Java implementation class is represented by an equivalent inherited interface in
the OMG IDL interface. Inherited classes and inherited interfaces that are not
RMI/IDL remote interfaces are ignored.

At run time, any instances of the composite implementation class must, from a
CORBA perspective, implement the corresponding composite OMG IDL interface.
This implies, for example, they must return true to any calls of “is_a” on any of the
OMG IDL interfaces associated with the distinct RMI/IDL interfaces.

1.3.12.1 Example

The RMI/IDL implementation classal pha. br avo. AB that implements the RMI/IDL
remote interfaces al pha. br avo. A and al pha. br avo. B:

/'l Java

package al pha. bravo;

public class AB extends javax.rni.Portabl eRenot eChj ect
i mpl ement s al pha. bravo. A, al pha. bravo. B {

}
is mapped to the OMG IDL.:

/I IDL
module alpha {
module bravo {
interface AB: ::alpha::bravo::A, ::alpha::bravo::B {

b
#pragma ID AB “RMIl:alpha.bravo.AB:0000000000000000”
b
b

1.4 Run-Timelssues

In addition to the RMI/IDL mapping there are also run-time issues about how to
implement Java RMI/IDL calls over GIOP.

1.4.1 Subclasses of Value Objects

It should be possible to send a subclass of an RMI/IDL value type where a base value
type was specified in the OMG IDL.

September 2003 Javato IDL Mapping: Run-Time Issues 1-31

1-32

If this occurs, the recipient is responsible for locating a suitable implementation
subclass to represent the val ue object subtype. In cases where a Java virtual machineis
available, this might include attempting to load Java bytecodes for the subclass. In the
Java to C++ case this might involve attempting to locate a suitable C++ subclass.

The name of the subclass can be obtained by parsing the value object’s repository 1D,
which must be in the standard OMG RMI Hashed format (see Section 1.3.5.7,
“Repository ID,” on page 1-18).

If a suitable subclass is not available, then the recipient must raise an exception. It is
not acceptable for an implementation to attempt to substitute a base class of the
subclass value that was transmitted.

1.4.2 Locating Stubs for Remote References

When receiving an IOR from another system, it is the responsibility of the receiving
system to know which RMI/IDL type is expected. The receiving system should be
prepared to use stubs associated with this RMI/IDL type to manage the received object
reference. However, the receiving system may also optionally use the Repository 1D of
the incoming IOR to locate and use stubs that more accurately reflect the true run-time
type of the object reference.

1.4.3 Narrowing

To narrow an RMI/IDL object reference to a different type, application programmers
must use the static nar r ow method provided by the

javax. rm . Port abl eRenot eObj ect class (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Thus for example they might do:

/1 Java
al pha. bravo. Manmal m = get Manmal () ;
try {
b = (al pha. bravo. Bandi coot)
j avax. rm . Port abl eRenot eObj ect . narr ow(
m al pha. bravo. Bandi coot . cl ass);
} catch (C assCast Exception ex) {

}

1.4.4 Allocating Ties for Remote Values

Following normal RMI semantics, an RMI server-side implementation object may be
passed across an RMI remote interface as though it were a remote reference.

Thejavax.rm . CORBA. Util.witeRenot eCbj ect method checks whether a
transmitted object is an implementation object and if so, allocates or reuses a suitable
tie object. The type of the tie object should correspond to the OMG IDL type that the
implementation object implements.

Javato IDL Mapping, v1.3 September 2003

1

September 2003

Thistie class is located at run time by finding the class of the implementation object
and checking for a corresponding tie class (see Section 1.4.6, “Locating Stubs and
Ties,” on page 1-33). If no suitable tie class is found, the check is repeated on the
implementation class's base class and so on up the inheritance chain, excluding

j ava. | ang. Qbj ect . If no suitable tie class is found, a marshaling error occurs.

1.4.5 Wide Character Support

Since Java supports Unicode characters and strings, ORBs supporting RMI/IDL must
provide some form of wide character support.

Note that as part of 11OP code set negotiation, ORBs are required to accept Unicode
UTF16 for use as a fallback transmission format for wide characters, though they may
negotiate to use other formats.

1.4.6 Locating Stubs and Ties

At various times it may be necessary for the ORB to locate either a stub class for a
given RMI/IDL remote interface or abstract interface, or atie class for a given
RMI/IDL implementation class. The name of the stub class is formed by taking the
name of the RMI/IDL interface, prepending “ " and appending "_Stub." The name of
the tie class is formed by taking the name of the RMI/IDL implementation class,
prepending “ " and appending "_Tie." For RMI/IDL implementation classes that are
mapped to IDL (see Section 1.3.12, “Mapping Implementation Classes,” on

page 1-30), the name of the stub class for the composite interface is formed by taking
the name of the RMI/IDL implementation class, prepending “_" and appending
“_Stub.”

The stub class corresponding to an RMI/IDL interface or implementation class may
either be in the same package as its associated interface or class, or may be further
qualified by the or g. ong. st ub package prefix. For example, the stub class for an
RMI/IDL interface class a. b. Fr ed would be named either a. b. _Fred_St ub or
org.ong. stub. a.b. _Fred_Stub. For an RMI/IDL implementation class

X. Y. Z, thetie classwould be named x. y. _Z Ti e.

When loading a stub class corresponding to an interface or class
<packagename>.<typename>, the class <packagename>. <typename>_Stub shall be
used if it exists; otherwise, the class org.omg.stub.<packagename>._<typename>_Stub
shall be used.

A given Java virtual machine may have several different “class loaders’ active
simultaneously. Each of these class loaders provides a separate naming context for
Java classes. For example, a browser might be running applets from several different
hosts. To avoid class name conflicts it will run the applets in different class loaders.
Thus, two different applets might both reference a class called Foo, but each of them
will get its own version of the Foo class from its own class loader.

Thej ava. |l ang. C ass. get O assl oader method returns the class loader for a
given Cl ass. So given one O ass it is possible to generate new class names and
then attempt to load those additional classes from the original class's class loader.

Javato IDL Mapping: Run-TimeIssues 1-33

It is important in Java APIs to use an appropriate class loader when trying to locate a
named class. To ease this problem in the ORB Portability APIs we normally pass
around j ava. | ang. C ass objects rather than simply class names. When it is
necessary to load named classes, runtime code should take care to use an appropriate
class loader (e.g., by using one from an existing Cl ass object).

1.4.7 Mapping RMI Exceptions to CORBA Exceptions

To ensure correct RMI exception passing semantics when running over 110P, all Java
exceptions thrown by the server implementation must be passed back to the client. Any
exception that is an instance of an RMI/IDL exception type declared by the method or
any subclass of such atype (other than j ava. r m . Renot eExcepti on and its
subclasses) is marshaled as the mapped IDL exception corresponding to the declared
RMI/IDL exception (see Section 1.3.7.2, “The IDL exception,” on page 1-24) containing
a mapped IDL valuetype corresponding to the actual runtime RMI/IDL exception type
(see Section 1.3.7.1, “The IDL value type,” on page 1-24). On the client side, the mapped
IDL valuetype is unmarshaled and thrown back to the application.

For example, if a method in an RMI/IDL remote interface declares an exception type
Mammal Except i on and its implementation throws an instance of

Worrbat Except i on (a subclass of Mammal Except i on), then this exception is
marshaled as an IDL exception MammalEx containing an IDL valuetype
WombatException, and a Wnbat Except i on is thrown to the client application.

All other Java exceptions are marshaled as CORBA UNKNOWN system exceptions
whose GIOP Reply message includes an UnknownExceptioninfo service context
containing the marshaled Java exception thrown by the server implementation. The
Java exception is marshaled using the rules for CDR marshaling of value types as
defined by the GIOP specification, applied in conjunction with the rules for mapping
RMI/IDL valuetypesto IDL asdefined in Section 1.3.5, “Mapping for RMI/IDL Value
Types,” on page 1-15 of this specification.

In order to support versioning of the Java exception marshaled within an
UnknownExceptioninfo service context, a SendingContextRunTime service
context must previously have been processed for the connection. If a GIOP message
carrying both an UnknownExceptionInfo service context and a
SendingContextRunTime service context is received, and no
SendingContextRunTime service context has previously been processed for this
connection, then the SendingContextRunTime service context must be processed
before the data within the UnknownExceptioninfo service context is unmarshaled.

1-34 Javato IDL Mapping, v1.3 September 2003

1.4.8 Mapping CORBA System Exceptions to RMI Exceptions

In general CORBA system exceptions are simply mapped to instances of

j ava. rm . Renmot eExcept i on; however, some CORBA system exceptions are
mapped to more specific subclasses of Renpt eExcept i on. These are listed in
Table 1-2.

Table 1-2 CORBA and RMI Exceptions

CORBA Exception

RM1 Exception

COMM_FAILURE

java. rm . Marshal Exception

INV_OBJREF

java. rm . NoSuchQbj ect Excepti on

NO_PERMISSION

java.rm . AccessException

MARSHAL

java. rm . Marshal Exception

BAD_PARAM

java.rm . Marshal Exception

OBJECT_NOT_EXIST

java. rm . NoSuchQbj ect Excepti on

TRANSACTION_REQUIRED

javax.transaction. Transacti onRequi r edExcepti on

TRANSACTION_ROLLEDBACK j avax.transaction. Transacti onRol | edbackExcepti on

INVALID_TRANSACTION

j avax.transaction. I nvalidTransacti onException

September 2003

In all cases, the RMI exception is created with a detail string that consists of:
® the string “CORBA”

* followed by the CORBA name of the system exception

¢ followed by a space

¢ followed by the hexadecimal value of the system exception’s minor code
* followed by a space

¢ followed by the completion status of “Yes,” “No,” or “Maybe.”

Thus a CORBA UNKNOWN system exception with a minor code of 0x31 and a
completion status of Maybe would be mapped to a Renot eExcept i on with the
following detail string:

“CORBA UNKNOWN 0x31 Maybe”

The Renot eExcept i on returned by mapSyst enExcept i on must preserve the
original CORBA system exception as the detail field, except when the origina
CORBA system exception is BAD_PARAM with a minor code of 6, which is mapped
tojava.i o. Not Seri al i zabl eExcepti on.

Javato IDL Mapping: Run-Time Issues 1-35

1-36

1.4.8.1 Mapping of UnknownExceptionlnfo Service Context

CORBA UNKNOWN exceptions whose GIOP Reply message includes an
UnknownExceptionInfo service context containing a marshaled instance of
j ava. | ang. Thr owabl e or one of its subclasses are mapped to RMI exceptions
according to the type of the object contained in the service context, as shown in
Table 1-3.
Table 1-3 UnknownExceptioninfo and RMI Exceptions

UnknownExceptionlnfo RM1 Exception

j ava. | ang. Error (or subclass) java.rm . ServerError

j ava. rm . Renot eExcepti on (or java.rm . Server Exception

subclass)

subclass)

java. | ang. Runti meException (or | java.rm . ServerRunti meException

(JDK 1.1)
java. |l ang. Runt i neExcepti on
(Java 2)

1.4.9 Code Downloading

1491

1.4.9.2

Class downloading is supported for stubs, ties, values, and value helpers. The
specification has been designed to be implementable using either JDK 1.1.6 or Java 2
APIs, alows transmission of codebase information on the wire for stubs and ties, and
enables usage of pre-existing ClassL oaders when relevant.

Definitions

"codebase” - A j ava. | ang. Stri ng containing a space-separated array of URLS
(e.g., "http://facme.com/classes" or "http://abc.net/classes http://abc.net/ext/classes").

"localCodebase" - The System Property "java.rmi.server.codebase" whose value is a
codebase or null. Defaults to null.

"remoteCodebase" - The codebase transmitted from a remote system. May be null.

"useCodebaseOnly" - The System Property "java.rmi.server.useCodebaseOnly" whose
value is either "true” or "false." Defaults to "false." If "true" (ignoring case), any
remote codebase is ignored and only the local codebase used.

"loader" - A class |loader that specifies a context within which classloading isinitiated.
May be null.

Codebase Selection

TheUti| . get CodeBase(Cl ass cl z) method (see Section 1.5.1.6, “Util,” on
page 1-51) performs codebase selection.

Javato IDL Mapping, v1.3 September 2003

September 2003

1.4.9.3

1494

On Java 2, this method returns the same string as
java.rm .server. RM Cl assLoader . get O assAnnot ati on(cl z)

On JDK 1.1, this method works as follows:

1. If the name of cl z has atop-level package qualifier of j ava, then return null,
else...

2. If ¢l z has a ClassLoader with a URL security context, then return this URL, else...

3. If there is a security manager with a URL security context, then return this URL,
else...

4. Return local Codebase.

When sending RMI/IDL values from Java, the codebase transmitted over GIOP must
be the codebase that this method would return for the value's class.

When sending RMI/IDL object references from Java, the codebase transmitted over
GIOP is selected by calling the method

org.ong. CORBA 2 3.portable. Objectlnpl. _get codebase() onthe
stub object.

Codebase Transmission
For values and value helpers, the codebase is transmitted after the value tag.

For stubs and ties, the codebase is transmitted as the TaggedComponent
TAG_JAVA_CODEBASE inthe IOR profile, where the component_data isa CDR
encapsulation of the codebase written as an IDL string. The codebase is a space-
separated list of one or more URLSs.

In all cases, the SendingContextRunTime service context may provide a default
codebase that is used if not overridden by a more specific codebase encoded in a
valuetype or IOR.

For object references created using | nput St r eam r ead_(hj ect or

I nput Stream read_abstract i nterface, the transmitted codebase is stored
in the object reference (stub) and can be retrieved subsequently using the

org.ong. CORBA 2 3. portable. Objectlnpl._get_codebase() method,
described bel ow.

If no codebase was transmitted, local Codebase is stored in the object reference (stub).

Codebase Access

In the event that Por t abl eRenpt eCbj ect . narrow() must load a stub, it needs
to call a portable API to extract codebase information from the original stub. This API
is aso used by the Qut put St r eammethodswr i t e_CObj ect and

write abstract _interface toobtain the codebase to be transmitted in the
TAG_JAVA_CODEBASE TaggedComponent. The API that is provided for these

Javato IDL Mapping: Run-Time Issues 1-37

1-38

1.4.95

purposes isthe _get _codebase() method of the
org. ong. CORBA 2 3. portabl e. Obj ect | npl class. See the IDL/Java
Language Mapping specification.

Codebase Usage

The following method (see Section 1.5.1.6, “Util,” on page 1-51) is used to load
classes.

Util.loadd ass(String cl assNane,

String renoteCodebase,
Cl assLoader | oader)
throws C assNot FoundException { ... }

On Java 2, this method works as follows:

1

5.

Find the first non-null ClassLoader on the call stack and attempt to load the class
using this ClassLoader. If this fails...

If r enot eCodebase is non-null and useCodebaseOnly is false, then call
java.rm .server. RM Cl assLoader .| oadC ass
(renot eCodebase, cl assNane)

If r enot eCodebase is null or useCodebaseOnly is true, then call
java.rm .server. RM C assLoader. | oadd ass(cl assNane)

If a class was not successfully loaded by step 1, 2, or 3, and | oader is non-null,
then call O ass. f or Nane(cl assNane, fal se, |oader).

If a class was successfully loaded by step 1, 2, 3, or 4, then return the loaded class.

On JDK 1.1, this method works as follows:

1

If cl assName isan array type, extract the array element type. If thisis aprimitive
type, then call d ass. f or Nane(¢l assNane) , else proceed using the array
element class name as cl assNane.

Search the call stack for the first non-null ClassLoader. If a ClassLoader is found,
then attempt to load the class using this ClassL oader, else attempt to load the class
using Cl ass. For Name(cl assNane) . If thisfails...

If r enot eCodebase is non-null and useCodebaseOnly is false, then call
java.rm .server.RM Cl assLoader. | oadd ass(codebaseURL,

cl assNane) for each remote codebase URL in the r enpt eCodebase string
until the class is found.

If r enot eCodebase is null or useCodebaseOnly is true, then call
java.rm .server.RM C assLoader. | oadC ass(cl assNane) .

If aclass was not successfully loaded by step 1, 2, 3, or 4, and | oader isnon-null,
then call | oader . | oadCl ass(cl assNan®e) .

Javato IDL Mapping, v1.3 September 2003

September 2003

6. If aclass was successfully loaded by step 1, 2, 3, 4, or 5, then return the loaded
class, unless the cl assName parameter was a non-primitive array type, in which
case return a suitably dimensioned array class for the element class that was |oaded.

When loading classes for RMI/IDL values, stubs, and ties, the class |loaded must be the
same as that returned by this method except where stated below.

For values and their helper classes, r enpt eCodebase is the codebase that was
transmitted in the GIOP valuetype encoding (if any), or else the codebase obtained
from the SendingContextRunTime service context associated with the 110OP
connection. (I oader isnull or the class loader of the expected value class, if known.)

For ties created by Por t abl eRenpt eCbj ect . export Obj ect
r enot eCodebase is obtained by calling Ut i | . get Codebase on the class of the
implementation object. (I oader isnull.)

For stubs created by | nput St ream read_(bj ect (), r enot eCodebase isthe
codebase transmitted in the IOR TaggedComponent TAG_JAVA CODEBASE (if
any), or else the codebase obtained from the SendingContextRunTime service
context associated with the 110OP connection. This method may either create a generic
stub for subsequent narrowing or may attempt to create a stub by loading a stub class
that matches the Repositoryld in the IOR. (I oader isnull.)

For stubs created by | nput St r eam r ead_Qbj ect (cl z), renot eCodebase is
the same as for | nput St ream read_Obj ect (). If cl z isastub class, then the
implementation of r ead_Obj ect (¢l z) may either use the actual parameter cl z to
create a stub or may attempt to create a stub by loading a stub class whose name is
derived from the Repositoryld in the IOR. If ¢l z isan RMI/IDL remote interface,
then the implementation of r ead_Obj ect (¢l z) creates a stub whose class name is
derived from either the name of the interface type cl z or the Repositoryld in the IOR.
(I oader iscl z. get Cl assLoader () .)

For stubs created by Por t abl eRenpt ebj ect . narrow, renoteCodebase is
obtained from the nar r owr omobject by calling the

oj ect I npl . _get _codebase() method. For stubs created by

Port abl eRenpt ebj ect. toStub, Util.witeRenotelject or
Util.witeAbstract Object,renonteCodebase isaobtained by calling
Util.get Codebase() on the class of the implementation object. (I oader is
nar r omr om get Cl assLoader () .)

For all stubs, r enot eCodebase is stored by the Delegate and can be retrieved
subsequently using the Cbj ect | npl . _get codebase() method.

1.4.10 Custom Marshaling Format

When an RMI/IDL value type is custom marshaled over GIOP, the following data is
transmitted:

a. octet - Format version. 1 or 2.

For serializable objects with awr i t eQbj ect method:
b. boolean - Trueif def aul t Wit eCbj ect was called, false otherwise.

Javato IDL Mapping: Run-TimeIssues 1-39

c. (optional) Data written by def aul t Wi t eQbj ect . The ordering of the fields
is the same as the order in which they appear in the mapped IDL valuetype, and
these fields are encoded exactly as they would be if the class did not have a
wr it eCbj ect method.

d. Additional datawritten by wr i t eObj ect , encoded as specified below. For format
version 1, this datais optional and if present must be written "as is". For format
version 2, if optional datais present then it must be enclosed within a CDR custom
valuetype with no codebase and repid " RM : or g. ong. cust om <cl ass>"
where <cl ass> isthe fully-qualified name of the class whose wr i t eQhj ect
method is being invoked. For format version 2, if optional data is not present then
anull valuetype (0x00000000) must be written to indicate the absence of optional
data.

For externalizable objects:
b. (optional) Data written by wr i t eExt er nal , encoded as specified below.

Primitive Java types are marshaled as their corresponding IDL primitives (see

Section 1.3.3, “Mappings for Primitive Types,” on page 1-10). Java strings written by
thej ava.i 0. Obj ect Qut put Stream w i t eUTF() method and read by the

j ava. i o. Obj ect | nput Stream r eadUTF() method are marshaled as IDL
wstrings. Javai nt sand St ri ngs written by thewri t eByt e, wri t eChar,
writeBytes,andwiteChars methodsof j ava. i 0. Obj ect Qut put St r eam
are marshaled as specified by the definitions of these methods in the

j ava. i o. Dat aCut put interface. Other Java objects are marshaled in the form of an
IDL abstract interface (i.e., a union with a boolean discriminator containing either an
object reference if the discriminator is true or avalue type if the discriminator is false).

RMI/IDL stubs, RMI/IDL remote implementations, and IDL stubs are marshaled as
object references (IORs). All other Java objects are marshaled as value types. The
value type encoding is determined from the object's runtime type by applying the
mappings specified in Section 1.3.5, “Mapping for RMI/IDL Value Types,” on
page 1-15 and Section 1.3.6, “Mapping for RMI/IDL Arrays,” on page 1-21.

The default custom stream format is 1 for GIOP 1.2 and 2 for GIOP 1.3. For RMI/IDL
custom value types marshaled within GIOP requests, a format version not greater than
the default for the GIOP message level must be sent, except where the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-40) is part of the IOR profile. For RMI/IDL custom value types marshaled
within GIOP replies (including the UnknownExceptioninfo service context), a
format version not greater than the default for the GIOP message level must be sent,
except where the RMICustomMaxStreamFormat service context (see

Section 1.4.12, “RMICustomM axStreamFormat Service Context,” on page 1-41) was
sent on the associated GIOP request

1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component

Although the I10P level of an IOR specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of GIOP requests to this IOR, there
are cases when it may be necessary to override this default.

1-40 Javato IDL Mapping, v1.3 September 2003

1

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component has an associated
value of type octet, encoded as a CDR encapsulation, designating the maximum stream
format version for RMI/IDL custom value types that can be used in GIOP messages sent
to this IOR.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component can appear at
most once in any I0OR profile. For profiles supporting I1OP 1.2 or greatey, it is
optionally present. If this component is omitted, then the default maximum stream
format version for RMI/IDL custom value types sent to this IOR is 1 for IIOP 1.2 and
2 for 11OP 1.3.

1.4.12 RMICustomMaxStreamFormat Service Context

Although the GIOP level of arequest specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of the associated reply, there are
cases when it may be necessary to override this default.

RMICustomMaxStreamFormat identifies a CDR encapsulation of asingle octet that
specifies the highest RMI/IDL custom stream format version that can be used for
RMI/IDL custom valuetypes marshaled within a GIOP reply associated with the GIOP
request that carries this service context. If this service context is omitted from a GIOP
request, then the default maximum stream format version for RMI/IDL custom value
types marshaled within a GIOP reply associated with this request is 1 for GIOP 1.2 and
2 for GIOP 1.3.

1.4.13 Marshaling RMI/IDL Arrays

RMI/IDL arrays must be marshaled with a repository ID indicating their runtime type.
Also, RMI/IDL arrays must be unmarshaled according to the type specified in the
repository ID.

1.4.14 Creating ORB Instances

The Portability APIs (see Section 1.5, “Portability Interfaces,” on page 1-42) and
Application Programming Interfaces (see Section 1.6, “ Application Programming
Interfaces,” on page 1-62) in the java.rmi.CORBA package define functionality that is
not part of the ORB and requires the use of an existing ORB instance for certain
operations. Nothing in this specification requires an implementation of these
javax.rmi.CORBA APIsto create a new ORB instance.

1.4.15 Runtime Limitations

Our mapping implies three runtime limitations relative to current Java RMI.

September 2003 Javato IDL Mapping: Run-Time Issues 1-41

Shared reference objects

In Java, remote object references are represented as Java objects. This means that there
can be several Java pointers to one object reference. This pointer sharing may be lost
when transmitting graphs of Java objects across RMI/IDL.

In practice thisis likely to have only very minor impact on Java programmers.

Distributed garbage collection

Java provides automatic garbage collection and RMI using its native protocol extends
this to the net with distributed garbage collection.

CORBA does not currently provide support for distributed garbage collection;
therefore, distributed garbage collection is not supported as part of RMI/IDL. It is
instead each server’s responsibility to maintain references to any server objects it
wishes to keep active, and to free these references when it wishes the server object to
be garbage collected. Thisis done using the expor t Cbj ect and unexport Obj ect
methods of j avax. r m . Port abl eRenpt eObj ect (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Narrowing

Java provides type-checked casts as part of the language. RMI using its native protocol
dynamically downloads stubs that accurately reflect the RMI interface types of each
remote object reference, thereby allowing Java language casts to be used to narrow
remote object references.

Downloadable stubs are not required by the CORBA object model. Since we cannot
rely on downloadable stubs, we cannot rely on simple Java casts to implement
narrowing of object references. We have therefore defined an explicit nar r ow method
(see Section 1.4.3, “Narrowing,” on page 1-32) that programmers must use when
narrowing portable RMI object references.

1.5 Portability Interfaces

This section describes extensions to the portable stubs and skeletons architecture
defined in the IDL/Java language mapping. These extensions allow stubs and skeletons
to be created for this Javato IDL mapping that can rely on a standard set of Java ORB
Portability APIs, including APIs for serializing Java objects to GIOP format.

These ORB portability APIs also allow alternative implementations of the RMI/IDL
APIs.

See Section 1.5.2.1, “Stub classes,” on page 1-54 and Section 1.5.2.3, “Tie classes,” on
page 1-57 for simple example stubs and ties.

1-42 Javato IDL Mapping, v1.3 September 2003

September 2003

1.5.1 Portability APIs

1511 Tie

The interface j avax. rm . CORBA. Ti e defines methods that all RMI/IDL server
side ties must implement.

The j avax prefix indicates these classes are part of a standard extension. The use of
this prefix allows these interfaces and classes to be delivered as an add-on to existing
JDKs. Security checks in the browsers prevent downloading of classes whose top-level
package qualifier isj ava, so Sun has defined the convention of using a top-level
qualifier of j avax for extensions.

/'l Java
public interface Tie extends
or g. ong. CORBA. port abl e. | nvokeHandl er {

org. ong. CORBA. (bj ect thisObject();

voi d deactivate() throws java.rm .NoSuchObj ect Excepti on;
org. ong. CORBA. ORB or b();

voi d orb(org. ong. CORBA. ORB orb);

voi d set Target(java.rm . Renote target);

java.rm . Renote get Target ();

}

Thet hi sCbj ect method returns an object reference for the target object represented
by the Ti e. It is semantically equivalent to the _t hi s_obj ect () method of the
org. ong. Port abl eServer. Servant class.

The deact i vat e method deactivates the target object represented by the Ti e. Itis
semantically equivalent to the deact i vat e_obj ect method of the

org. ong. Port abl eSer ver . PQA class. If the target object could not be
deactivated (e.g., because it is not currently active), aNoSuchQbj ect Excepti onis
thrown.

The or b() method returns the ORB for the Ti e. It is semantically equivalent to the
_orb() method of the or g. ong. Por t abl eSer ver. Ser vant class.

The or b(ORB or b) method sets the ORB for the Ti e. It is semantically equivalent
to calling ORB. set _del egat e() with an actual parameter of type
org. ong. Port abl eServer. Servant .

The set Tar get method must be implemented by tie classes. It will be called by
Util.registerTarget tonotify the tie of its registered target implementation
object.

Javato IDL Mapping: Portability Interfaces 1-43

1-44

1512

The get Tar get method must be implemented by tie classes. It returns the registered
target implementation object for the tie.

Stub

The classj avax. rm . CORBA. St ub is the standard base class from which all
RMI/IDL stubs must inherit. Its main reason for existence is to act as a convenience
base class to handle stub serialization.

/'l Java

public abstract class Stub
ext ends org. ong. CORBA 2 3. portabl e. Obj ect | npl
i npl ements java.io.Serializable {

private static final |ong serial VersionU D =

1087775603798577179L;
public int hashCode() { ... }
public bool ean equal s(java.lang. Gbject obj) { ... }
public String toString() { ... }

public void connect (org. ong. CORBA. ORB or b)
throws java.rm . RenoteException { ... }

private void witeGObject(java.io.ObjectQutputStreams)
throws java.io.|lOexception { ... }

private void readObj ect(java.io. ojectlnputStream s)
throws java.io.| OException,
Cl assNot FoundException { ... }

}

The hashCode method shall return the same hash code for all stubs that represent the
same remote object. The equal s method shall return t r ue when used to compare
stubs that represent the same remote object, and f al se otherwise. Thet oSt ri ng
method shall return the same string for all stubs that represent the same remote object.

The connect method makes the stub ready for remote communication using the
specified ORB object or b. Connection normally happens implicitly when the stub is
received or sent as an argument on a remote method call, but it is sometimes useful to
do this by making an explicit call (e.g., following deserialization). If the stub is already
connected to or b (i.e., has a delegate set for or b), then connect takes no action. If
the stub is connected to some other ORB, then a Renot eExcept i on is thrown.
Otherwise, a delegate is created for this stub and the ORB object or b.

The St ub. connect method is not intended to be called directly by application code.
Instead, application code should call the Por t abl eRenpt ehj ect . connect
method (see Section 1.6.1, “PortableRemoteObject,” on page 1-62), which will in turn

Javato IDL Mapping, v1.3 September 2003

1

September 2003

1513

1514

call the St ub. connect method. This allows the application code to remain portable
between 110P and JRMP. RMI/IDL stubs may also be connected to an ORB implicitly
by being passed to Qut put Stream wri t e_Qbj ect .

Thewr it eCbj ect and r eadCbj ect methods support stub serialization and
deserialization by saving and restoring the IOR associated with the stub. The
wri t eCbj ect method writes the following data to the serialization stream:
1. int - length of IOR type id

2. byte[] - IOR type ID encoded using 1SO 8859-1 (written usingawri t e call, not a
writeObject cal)

3. int - number of 10OR profiles

4. For each IOR profile:
a. int - profile tag
b. int - length of profile data
c. byte[] - profile data (written using awri t e call, not awr i t eObj ect call).

ValueOutputStream

The interface or g. ong. CORBA. port abl e. Val ueCut put St r eamdefines
methods that allow serialization of custom-marshaled RMI/IDL objects to GIOP streams.

/'l Java
public interface Val ueCut put Stream {

void start_value(java.lang. String rep_id);

voi d end_val ue();

}

The st art _val ue method ends any currently open chunk, writes a valuetype header
for a nested custom valuetype (with a null codebase and the specified repository 1D),
and increments the valuetype nesting depth.

The end_val ue method ends any currently open chunk, writes the end tag for the
nested custom valuetype, and decrements the valuetype nesting depth.

Valuel nputStream

Theinterface or g. ong. CORBA. port abl e. Val uel nput St r eamdefines methods
that allow deserialization of custom-marshaled RMI/IDL objects from GIOP streams.

/'l Java
public interface Val uel nput Stream {

void start_val ue();

voi d end_val ue();

Javato IDL Mapping: Portability Interfaces 1-45

The st art _val ue method reads a valuetype header for a nested custom valuetype
and increments the valuetype nesting depth.

The end_val ue method reads the end tag for the nested custom valuetype (after
skipping any data that precedes the end tag) and decrements the val uetype nesting
depth.

1.5.1.5 ValueHandler and Related Interfaces

The interfaces j avax. r m . CORBA. Val ueHandl er,

j avax. rm . CORBA. Val ueHandl er Mul ti For mat, and

j avax. rm . CORBA. Val ueHandl er CodeBaseDel egat e define methods that
allow serialization of Java objects to and from GIOP streams.

/'l Java
public interface Val ueHandl er {

void witeVal ue(org. ong. CORBA. portabl e. Qut put Stream out,
java.io. Serializable val ue);

java.io. Serializable readVal ue(
org. ong. CORBA. portabl e. |l nputStreamin,
int offset,
Cl ass cl z,
String repositoryl D,
or g. ong. Sendi ngCont ext. RunTi ne sender);

String get RM Repositoryl D(Cl ass cl z);

bool ean i sCust onmvar shal ed(C ass cl z);

/**

* @epr ecat ed

*/

or g. ong. Sendi ngCont ext . RunTi ne get RunTi neCodeBase() ;

java.io. Serializable witeReplace(
java.io. Serializable val ue);

}

public interface Val ueHandl er Mul ti For mat
ext ends Val ueHandl er {

byt e get Maxi nunst r eanfor mat Ver si on() ;
void witeVal ue(org. ong. CORBA. portabl e. Qut put St ream out,

java.io. Serializable val ue,
byt e streanfor mat Ver si on) ;

1-46 Javato IDL Mapping, v1.3 September 2003

September 2003

public interface Val ueHandl er CodeBaseDel egate {
or g. ong. Sendi ngCont ext . CodeBaseQper at i ons
get RunTi meCodeBaseDel egat e() ;

}

Thewr i t eVal ue method can be used to write GIOP data, including RMI remote
objects and serialized data objects, to an underlying portable Qut put St r eam

The implementation of the wr i t eVal ue method interacts with the core Java
serialization machinery. The data generated during serialization is written using the
underlying Qut put St r eamobject.

Ther eadVal ue method can be used to read GIOP data, including RMI remote
objects and serialized data objects, from an underlying portable | nput St r eam The
of f set parameter isthe offset in the stream of the value being unmarshaled. Thecl z
parameter is the Java class of the value to be unmarshaled. The r eposi t oryl D
parameter is the repository ID unmarshaled from the value header by the caller of

r eadVal ue. The sender parameter is the sending context object passed in the
optional service context tagged SendingContextRunTime in the GIOP header, if
any, or null if no sending context was passed.

The implementation of the r eadVal ue method interacts with the core Java
serialization machinery. The data required during deserialization is read using the
underlying | nput St r eamobject.

The get RM Reposi t or ylI D method returns the RMI-style repository ID string for
clz.

Thei sCust omMar shal ed method returnst r ue if the value is custom marshaled
and therefore requires a chunked encoding, and f al se otherwise.

The get RunTi neCodeBase method returns the Val ueHandl er object's
SendingContext::RunTime object reference, which is used to construct the
SendingContextRunTime service context.

Thewr i t eRepl ace method returns the serialization replacement for the val ue
object. Thisis the abject returned by calling val ue. wri t eRepl ace(), if val ue
hasawr i t eRepl ace method.

The Val ueHandl er Mul ti For nat interface introduces a method

get Maxi muntt r eantor mat Ver si on that returns the maximum stream format
version for RMI/IDL custom value types that is supported by this Val ueHandl er
object. The Val ueHandl er object must support the returned stream format version and
al lower versions. The format versions currently defined are 1 and 2. See Section 1.4.10,
“Custom Marshaling Format,” on page 1-39 for more details.

TheVal ueHand! er Mul t i For mat interface introduces an overloadedwr i t eVal ue
method that allows the ORB to pass the required stream format version for RMI/IDL
custom value types. If the ORB calls this method, it must pass a stream format version
between 1 and the value returned by the get Maxi muntt r eanfor mat Ver si on

Javato IDL Mapping: Portability Interfaces 1-47

1-48

method inclusive, or else aBAD_PARAM exception with standard minor code 39 must
be thrown. If the ORB calls the Val ueHandl er. wri t eVal ue method, stream
format version 1 isimplied.

The val ueHandl er CodeBaseDel egat e interface introduces a method

get RunTi meCodeBaseDel egat e. This method returns an implementation delegate
that an ORB can use to create a SendingContext::RunTime object reference and a
SendingContextRunTime service context. This method replaces the

Val ueHandl er. get RunTi meCodeBase method, which is deprecated. The

Val ueHandl er object returned by the Ut i | . cr eat eVal ueHandl er method must
aso implement the Val ueHandl er CodeBaseDel egat e interface.

Execution model for Serialization

Sun will provide an implementation of the Val ueHandl er interface that handles
writing and reading RMI/IDL objects by making calls to lower-level CORBA

Qut put St r eamand | nput St r eamobjects, which can be provided by an
independent ORB vendor. The Sun-provided implementation will handle the
interactions with the Java serialization machinery and will write any serialized data
through to the lower level stream.

Typically the ORB vendors will implement their own GIOP input and output streams.
Before transmitting RMI/IDL data they will create an object that supports the

Val ueHandl er interface by calling the cr eat eVal ueHandl er method of the
javax.rm . CORBA. Util class (see Section 1.5.1.6, “Util,” on page 1-51). When
they need to marshal a non-IDL value, they will call Val ueHandl er. wri t eVal ue,
and when they need to unmarshal a non-IDL value, they will call

Val ueHandl er. r eadVal ue.

The ORB output stream passed to the

Val ueHandl er Mul ti For mat . wri t eVal ue method must implement the

Val ueCQut put St r eaminterface (see Section 1.5.1.3, “ValueOutputStream,” on
page 1-45), and the ORB input stream passed to the Val ueHandl er . r eadVal ue
method must implement the Val uel nput St r eaminterface (see Section 1.5.1.4,
“ValuelnputStream,” on page 1-45).

ValueMarshaling

When marshaling an RMI value, the ORB stream must call Ut i | . get CodeBase to
get the codebase string, Val ueHandl er . get RM Reposi t or yl D to get the
repository ID string, and Val ueHandl er . i sCust omvar shal ed to seeif the value
is custom marshaled and therefore requires a chunked encoding.

The ORB stream writes the value tag, codebase (if any), and repository ID. It calls
Val ueHandl er. wri t eVal ue to write the state of the value. The ORB stream deals
with nulls, indirections, chunking, and end tags.

The ORB casts the Val ueHandl er object to type

Val ueHandl er CodeBaseDel egat e and calsits

get RunTi meCodeBaseDel egat e method to obtain an implementation delegate of
type CodeBaseQper at i ons. The ORB creates a SendingContextRunTime

Javato IDL Mapping, v1.3 September 2003

1

September 2003

service context containing an object reference for atied implementation whose delegate
isthis CodeBaseQper at i ons abject. Clients must send this service context on the
first GIOP request that flows over a connection that may be used to send RMI values
to the server. Servers must send this service context on the first GIOP reply that flows
over a connection that may be used to send RMI values to the client.

The ORB callsthe wr i t eRepl ace method before calling wri t eVal ue. The result
from calling this method is passed to Val ueHand!l er . wri t eVal ue unless either

® jtisapreviously marshaled value, in which case it is marshaled as an indirection, or

® jtsclassimplements or g. omg. CORBA. Obj ect, in which case it is marshaled as
an object reference.

An ORB stream instance must only call wr i t eRepl ace once for each value that it
marshals.

Before calling the wr i t eVal ue method of the Val ueHandl| er object, the ORB
must determine the stream format version to be used. This is the maximum format
version that is supported by both the local Val ueHandl er object and the remote
connection endpoint. The maximum local format version is the value returned by the
get Maxi muntt r eantor mat Ver si on method of the Val ueHandl er object, or 1
if the Val ueHandl er object doesn't support the Val ueHandl er Mul t i For mat
interface. The maximum remote format version is 1 for GIOP 1.2 messages and 2 for
GIOP 1.3 messages, except where these default values are overridden by either the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-40) or the RM Cust omvVax St r eanfor mat service context (see

Section 1.4.12, “RMICustomMaxStreamFormat Service Context,” on page 1-41). For
GIOP 1.2 messages, recognition of these overrides is optional.

If the stream format version computed in this way is 2 or greater, the ORB must call
the Val ueHandl er Mul ti For mat . wri t eVal ue method, passing this value. If the
stream format version computed in this way is 1, the ORB may call either the

Val ueHandl er Mul ti For mat . wri t eVal ue method (with stream format 1) or the
Val ueHandl er . wri t eVal ue method.

If the ORB’s call to the Val ueHandl er object’swr i t eVal ue method specified
RMI/IDL custom value type stream format version 2, then the Val ueHandl er object
must call the Val ueQut put St ream start _val ue and

Val ueCut put St r eam end_val ue methods of the ORB stream before and after
writing the data specified by item 1d of Section 1.4.10, “Custom Marshaling Format,”
on page 1-39. Ther ep_i d string passed to the st art _val ue method must be
"RM : org. ong. cust om <cl ass>: <hashcode>: <sui d>" where <cl ass>is
the fully-qualified name of the class whose wr i t eCObj ect method is being invoked
and <hashcode> and <sui d> are the class's hashcode and SUID. For format version
2, if the ORB stream passed to the Val ueHandl er object doesn't support the

Val ueCQut put St r eaminterface, then aBAD_PARAM exception with standard
minor code 40 must be thrown.

Javato IDL Mapping: Portability Interfaces 1-49

1-50

ValueUnmarshaling

When unmarshaling an RM1 value, the ORB stream must read the value tag, codebase
(if any), and repository ID. The ORB stream calls Ut i | . | oadC ass to load the
value's class, passing the Java class name contained in the RMI-style repository 1D and
the codebase string from the value's GIOP encoding (if present) or the
SendingContextRunTime service context.

The ORB stream calls Val ueHandl er . r eadVal ue to read the state of the value,
passing the current stream offset, the class returned by Uti | . | oadd ass, the
repository ID, and the sender’s SendingContext::RunTime object reference. The
repository ID is needed so that the Val ueHandl| er object can determine if the class
passed in is structurally identical to the class used by the sender to marshal the value.
The ORB stream deals with nulls, indirections, chunking, and end tags.

The Val ueHandl er object may receive an or g. ong. CORBA. port abl e.

I ndi recti onExcepti on from the ORB stream. The ORB input stream throws this
exception when it is called to unmarshal a value encoded as an indirection that isin the
process of being unmarshaled. This can occur when the ORB stream calls the

Val ueHandl er object to unmarshal an RMI value whose state contains a recursive
reference to itself. Because the top-level Val ueHandl er . r eadVal ue call has not
yet returned a value, the ORB stream’s indirection table contains no entry for an object
with the stream offset specified by the indirection tag. This stream offset is returned in
the exception’s of f set field.

If the Val ueHandl| er object receivesan | ndi r ecti onExcepti on,itis
responsible for ensuring that the correct Java object reference is assigned to the value
field that would have held the result returned by the ORB stream if an

I ndi recti onExcept i on had not occurred. The manner in which thisis done (e.g.,
eager or lazy) is not specified. If the offsetinan | ndi rect i onExcept i on does not
correspond to any offset previously passed to the Val ueHandl er objectina

Val ueHandl er . r eadVal ue method call, the Val ueHandl er . r eadVal ue
method shall throw a MARSHAL exception.

If the RMI/IDL custom data unmarshaled from the input stream was encoded using
stream format 2, then the Val ueHandl| er object must call the

Val uel nput St ream start _val ue and Val uel nput St r eam end_val ue
methods of the ORB stream before and after reading the data specified by item 1d of
Section 1.4.10, “Custom Marshaling Format,” on page 1-39. For format version 2, if
the ORB stream passed to the Val ueHandl er object doesn’t support the

Val uel nput St r eaminterface, then aBAD_PARAM exception with standard minor
code 41 must be thrown. If the format version unmarshaled by the Val ueHandl er
object is greater than the maximum version that it supports, then a MARSHAL
exception with standard minor code 7 must be thrown.

When using stream version 2, the ORB input stream must throw a MARSHAL
exception with standard minor code 10 to signal an incompatibility between the custom
data on the wire and read operations from the Val ueHandl er object until

end_val ue iscalled. This can occur when a sender’s version of a class does not
write custom data, but the receiver’s version attempts to perform a read operation.

Javato IDL Mapping, v1.3 September 2003

September 2003

1.5.1.6 Util

A utility classj avax. rm . CORBA. Uti | provides methods that can be used by
stubs to perform common operations.

/1l Java

public class Uil {

public static java.rm . RenpoteException
mapSyst enExcepti on(org. ong. CORBA. Syst enExcepti on ex)

{ ...}

public static void witeAny(

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

or g. ong. CORBA. port abl e. Qut put St r eam out
java.lang. Object obj){ ... }

static java.lang. Obj ect readAny(
org.ong. CORBA. portable.lnputStreamin) { ... }

static void witeRennteject(
or g. ong. CORBA. port abl e. Qut put St r eam out
java.lang. Object obj) { ... }

static void witeAbstract Object(
or g. ong. CORBA. port abl e. Qut put St r eam out ,
java.lang. Object obj) { ... }

static void registerTarget(Tie tie,
java.rm .Renote target) { ... }

static void unexportObject(java.rn .Renpte target)
throws java.rm . NoSuchObhj ect Excepti on

{ ...}
static Tie getTie(java.rm .Renote target) { ... }
static Val ueHandl er createValueHandler() { ... }

static java.rm .Renot eExcepti on w apExcepti on(
Throwabl e obj) { ... }

public static java.lang. Qbject copyObject(

j ava. | ang. Obj ect obj, org.ong. CORBA. ORB orb)

throws java.rm . RenoteException { ... }

public static java.lang. Object[] copyQnjects(

java. |l ang. Object[] obj, org.ong. CORBA. ORB orb)

throws java.rm . RenoteException { ... }

public static bool ean isLocal (Stub s)
throws java.rm . RenoteException { ... }

Javato IDL Mapping: Portability Interfaces 1-51

1-52

public static String getCodebase(Cd ass clz) {... }

public static O ass | oadd ass(String cl assNane,
String renoteCodebase,
Cl assLoader | oader)
throws C assNot FoundException { ... }

}

The mapSyst enExcept i on method maps a CORBA system exception to a
java.rm . Renot eException or aj ava. | ang. Runt i meExcepti on. The
mapping is described in Section 1.4.8, “Mapping CORBA System Exceptions to RMI
Exceptions,” on page 1-35. If the mapped exception is an instance of

java. rm . Renot eExcept i on or a subclass, the mapped exception is returned,;
otherwise, it is thrown.

The wr i t eAny method writes the Java object obj to the output stream out in the
form of a GIOP any. The contents of the GIOP any are determined by applying the
Java to IDL mapping rules to the actual runtime type of obj . If obj isnull, thenitis
written as follows: the TypeCode is tk_abstract_interface, the repository ID is

“1 DL: ong. or g/ CORBA/ Abstract Base: 1. 0", the name string is“*“, and the
any’svalue is a null abstract interface type (encoded as a boolean discriminant of
false followed by along value of 0x00000000).

The r eadAny method reads a GIOP any from the input stream i n and unmarshals it
as a Java object, which is returned. The following TypeCodes are valid for the GIOP
any: tk_value, tk_value box, tk_objref, and tk_abstract_interface. For each of these
types, both null and non-null values are valid. If the TypeCode is anything other than
these, a MARSHAL exception is thrown.

Thewr i t eRenpt ebj ect method is a utility method for use by stubs when writing
an RMI/IDL object reference to an output stream. If obj is a stub object,

wr i t eRenot eCbj ect simply writesobj toout.wite_Cbject. However, if
obj isan exported RMI/IDL implementation object, then wr i t eRenpt eCbj ect
allocates (or reuses) a suitable Ti e (see Section 1.4.4, “Allocating Ties for Remote
Values,” on page 1-32), plugs together the tie with obj , and writes the object reference
for thetietoout . wri t e_(bj ect. This method cannot be used to write a JRMP
object reference to an output stream.

Thewr i t eAbstract Obj ect method is another similar utility method for use by
stubs. If obj isavalue object, or a stub object, wri t eAbst r act Obj ect simply
writes obj toout.wite_abstract _interface. However, if obj isan
exported RMI/IDL implementation object, then wr i t eAbst r act Gbj ect allocates
(or reuses) a suitable Ti e (see Section 1.4.4, “Allocating Ties for Remote Values,” on
page 1-32), plugs together the tie with obj , and writes the object reference for the tie
totheout . wite abstract i nterface. This method cannot be used to write a
JRMP abject reference to an output stream.

Ther egi st er Tar get method is needed to support unexport Qbj ect . Because
unexport Qbj ect takes atarget implementation object as its parameter, it is
necessary for the Ut i | class to maintain a table mapping target objects back to their

Javato IDL Mapping, v1.3 September 2003

1

September 2003

1517

associated Ti es. It isthe responsibility of the code that allocates a Ti e to also call the
regi st er Tar get method to notify the Ut i | class of the target object for a given
tie. Ther egi st er Tar get method will call the Ti e. set Tar get method to notify
the tie object of its target object.

Theunexport Obj ect method deactivates an implementation object and removes its
associated Ti e from the table maintained by the Ut i | class. If the object is not
currently exported or could not be deactivated, a NoSuchQbj ect Excepti on is
thrown.

The get Ti e method returns the tie object for an implementation object t ar get , or
null if no tieis registered for the t ar get object.

The cr eat eVal ueHandl er method returns a singleton instance of a class that
implements the Val ueHandl er and Val ueHandl er CodeBaseDel egat e
interfaces.

The wr apExcept i on method wraps an exception thrown by an implementation
method. It returns the corresponding client-side exception. See Section 1.4.8.1,
“Mapping of UnknownExceptioninfo Service Context,” on page 1-36 for details.

The copyObj ect method is used by local stubs to copy an actual parameter, result
object, or exception. The copyObj ect s method is used by local stubs to copy any
number of actual parameters, preserving sharing across parameters as necessary to
support RMI/IDL semantics. The actual parameter Cbj ect [] array holds the method
parameter objects that need to be copied, and the result Obj ect [] array holds the
copied results.

The copyObj ect and copyObj ect s methods ensure that remote call semantics are
observed for local calls. They observe copy semantics for value objects that are
equivalent to marshaling, and they handle remote objects correctly. Stubs must either
call these methods or generate inline code to provide equivalent semantics.

Thei sLocal method has the same semantics as the Cbj ect | npl . _i s_I ocal
method, except that instead of throwing an or g. ong. CORBA. Syst enExcept i on,
it throwsaj ava. rni . Renpt eExcept i on that is the result of passing the

Syst enExcept i on to the mapSyst enmExcept i on method.

The get Codebase method returns the Java codebase for the Class object ¢l z asa
space-separated list of URLSs. See Section 1.4.9.2, “Codebase Selection,” on page 1-36
for details.

The |l oadCl ass method loads a Java class object for the Java class name
cl assName, using additional information passed in the r enot eCodebase and
| oader parameters. See Section 1.4.9.5, “Codebase Usage,” on page 1-38 for details.

Additional Portability APls

The Java Language to IDL Mapping uses the following portability APIs that are also
used by the OMG IDL to Java Mapping.

Javato IDL Mapping: Portability Interfaces 1-53

org. ong. CORBA. port abl e. | nput Stream

or g. ong. CORBA. port abl e. Qut put St ream
org.ong. CORBA 2 3. portable. | nputStream

org. ong. CORBA 2 3. portabl e. Qut put Stream

or g. ong. CORBA. port abl e. Obj ect | npl

or g. ong. CORBA. port abl e. Del egat e

org.ong. CORBA 2 3. portabl e. Cbjectl npl
org.ong. CORBA 2 3. portabl e. Del egat e

or g. ong. CORBA. port abl e. | nvokeHandl er

or g. ong. CORBA. port abl e. ResponseHand| er

or g. ong. CORBA. port abl e. Appl i cati onExcepti on
or g. ong. CORBA. port abl e. Renar shal Excepti on
or g. ong. CORBA. port abl e. UnknownExcept i on
org. ong. CORBA. portabl e. I ndirecti onExcepti on
or g. ong. CORBA. port abl e. Ser vant Obj ect

or g. ong. CORBA. port abl e. Ser vant Obj ect Ext

These APIs are described in the IDL to Java Language Mapping specification.

1.5.2 Generated classes
There are two kinds of classes generated as part of this specification.

1. Stub classes. These are used by RMI/IDL clients to send calls to a server. A stub
classis required for each RMI/IDL remote interface.

2. Tieclasses. These are used to process incoming calls and dispatch the callsto a
server implementation class. A tie class is required for each RMI/IDL
implementation class.

No generated classes are required for RMI/IDL value types, exceptions, etc.

1.5.2.1 Subclasses

For each RMI/IDL remote interface Foo there will be a stub class _Foo_ St ub that
extends j avax. r m . CORBA. St ub and implements Foo.

The stub class supports stub methods for all the RMI/IDL remote methods in the
RMI/IDL remote interfaces that it implements, and must have a public no-argument
constructor.

Here is a simple RMI/IDL interface and an example stub class:

/1 Java
public interface Aardvark extends java.rmnm .Renpte {
public int echo(int x) throws java.rm .RenoteException
Booner ang;

}

public class _Aardvark_Stub extends javax.rm . CORBA. Stub
i npl ements Aardvark {

1-54 Javato IDL Mapping, v1.3 September 2003

September 2003

public _Aardvark _Stub() {} // inplicit or explicit

public int echo(int x) throws java.rm . RenoteException,
Booner ang {
org.ong. CORBA 2 3.portable.InputStreamin = null;
try {

try {
or g. ong. CORBA. Qut put Stream out =

_request (“echo”, true);

out.write_ | ong(x);

in = (org.ong. CORBA 2 3. portable.lnputStream
_invoke(out);

return in.read_ | ong();

} catch (org. ong. CORBA. portabl e.
Appl i cati onException ex) {

in = (org.ong. CORBA 2 3. portable.lnputStream
ex. getlnput Stream);

String id = in.read_string();

if (id.equals("IDL:BoonerangEx/1.0")) {
t hrow (Boonerang)i n. read_val ue();

} else {
throw new java. rm . Unexpect edExcepti on(id);

} catch (org. ong. CORBA. port abl e. Remar shal Excepti on
ex) {

return echo(x);

}
} catch (org. ong. CORBA. Syst enException ex) {

throw javax. rm . CORBA. Uil . napSyst enExcepti on(ex);

} finally {
_rel easeRepl y(in);
}

1.5.2.2 Local Subs

The stub class may provide an optimized call path for local server implementation
objects. For amethod echo(i nt x) of aremote interface Aar dvar k, the optimized
path does the following:

1. Find out if the servant islocal by calling Uti | . i sLocal ().

2. If the servant islocal, call t hi s. _servant _prei nvoke("echo",
Aar dvar k. cl ass).

3. If _servant _prei nvoke returned a non-null ServantObject so, do the
following:
a. Cdl ((Aardvark)so. servant). echo(x).

Javato IDL Mapping: Portability Interfaces 1-55

1-56

b. If the invocation on the servant completed without throwing an exception, and so
is an instance of Ser vant Cbj ect Ext, then call
so. nor mal Conpl etion().

c. If the invocation on the servant threw exception exc, and so is an instance of
Ser vant Obj ect Ext , then call so. except i onal Conpl eti on(exc).

d. Cal this. _servant _postinvoke(so).

4. If _servant _prei nvoke returned null, repeat step 1. The call to
Util.isLocal () will return false, causing the non-optimized path to be
followed.

The _servant _prei nvoke method returns non-null if, and only if, an optimized
local call may be used. It performs any security checking that may be necessary. If the
_servant _pr ei nvoke method returns non-null, then the ser vant field of the
returned Ser vant Cbj ect must contain an object that implements the RMI/IDL
remote interface and can be used to call the servant implementation.

Local stubs are responsible for performing copying of method parameters, results and
exceptions, and handling remote objects correctly in order to provide remote/local-
transparent RMI/IDL semantics.

The following is an example of a stub class that provides this optimized call path.

/'l Java
i mport org.ong. CORBA. portabl e. Servant Obj ect Ext ;

public class _Aardvark_ Stub extends javax.rm . CORBA. Stub
i npl ements Aardvark {

public int echo(int x) throws java.rm .RenoteException,
Booner ang {
if (!javax.rm .CORBA Uil .isLocal (this)) {
/1 renmote call path
org.ong. CORBA 2 3.portable.InputStreamin = null;
try {

try {
or g. ong. CORBA. port abl e. Qut put Stream out =

_request ("echo", true);
out.write_| ong(x);
in = (org.ong. CORBA 2 3. portable.lnputStream
_invoke(out);
return in.read_ | ong();
} catch (org. ong. CORBA. portabl e.
Appl i cationException ex) {
in = (org.ong. CORBA 2 3. portable.lnputStream
ex. getlnputStream);
String id = in.read_string();
if (id.equals("IDL:BoonerangEx/1.0")) {
t hrow (Boonerang)i n. read_val ue();
} else {
throw new java. rm . Unexpect edException(id);
}

Javato IDL Mapping, v1.3 September 2003

1

September 2003

} catch (org. ong. CORBA. port abl e. Remar shal Excepti on
ex) {

return echo(x);
}
} catch (org. ong. CORBA. Syst enException ex) {
throw javax. rm . CORBA. Uil . napSyst enExcepti on(ex);

} finally {
_rel easeRepl y(in);
}

} else {
/1 local call path
org. ong. CORBA. port abl e. Servant Obj ect so =
_servant _prei nvoke("echo", Aardvark.cl ass);

if (so == null)
return echo(x);
try {

int result = ((Aardvark)so.servant). echo(x);
if (so instanceof Servant Cbject Ext)

((Servant Obj ect Ext) so). nor nal Conpl etion();
return result;

} catch (Throwabl e ex) {

if (so instanceof Servant Cbject Ext)

((Servant Obj ect Ext) so).

excepti onal Conpl eti on(ex);

Thr owabl e ex2 = (Throwabl e)

javax.rm . CORBA. Util.copyQbject(ex, _orb());
i f (ex2 instanceof Boonerang)

t hr ow (Booner ang) ex2;

el se
throw javax. CORBA. Uti | .w apExcepti on(ex2);
} finally {
_servant _postinvoke(so);
}
}
}
}

1.5.2.3 Tieclasses

For each RMI/IDL implementation class there will be a corresponding tie class that
implements j avax. rm . CORBA. Ti e. Thetie classis called by the ORB to process
an incoming call and to pass the call through to an associated target implementation
object.

After the Ti e abject has been constructed, the target implementation object must be
set withacall onUtil . registerTarget.

Here is asimple RMI/IDL interface and an example Ti e class:

Javato IDL Mapping: Portability Interfaces 1-57

1-58

/'l Java
public interface Aardvark extends java.rm .Renmpte {
public int echo(int x) throws java.rm .RenoteException
Boormer ang;

}

public class _Aardvark_Tie
ext ends org. ong. Portabl eServer. Servant
i mpl ements javax.rm . CORBA Tie {
private Aardvark target;

public void setTarget(java.rm.Remote targ) {
target = (Aardvark) targ;
}

public java.rni.Renpte getTarget () {
return target;
}

public org. ong. CORBA. Qut put Stream _i nvoke(Stri ng net hod,
org. ong. CORBA. I nput St ream i n,
or g. ong. CORBA. port abl e. ResponseHandl er rh) {

try {
i f (nethod. equal s(“echo”)) {

try {
int x =in.read_l ong();
int result = target.echo(x);
org. ong. CORBA 2 3. portabl e. Qut put St ream out
= (org.ong. CORBA 2 3. portabl e. Qut put Strean)
rh.createReply();
out.write_long(result);
return out;
} catch (Boonerang ex) {
String exid = "I DL: Boormer angEx/ 1. 0";
org. ong. CORBA 2 3. portabl e. Qut put St ream out
= (org.ong. CORBA 2 3. portabl e. Qut put Strean)
rh. creat eExcepti onRepl y();
out.write_string(exid);
out.wite_val ue(ex);
return out;

}
} else {
t hr ow new or g. ong. CORBA. BAD_OPERATI ON() ;
}
} catch (org. ong. CORBA. Syst emException ex) ({
t hrow ex;

} catch (Throwabl e ex) {
t hr ow new
or g. ong. CORBA. port abl e. UnknownExcepti on(ex);

Javato IDL Mapping, v1.3 September 2003

September 2003

public org.ong. CORBA. Object thishject() { ... }
public void deactivate() { ... }

public org.ong. CORBA.ORB orb() { ... }

public void orb(org. ong. CORBA.ORB orb) { ... }

1.5.3 Replaceability of API Implementations

1531

A framework is provided to enable vendor-specific implementations of the Java
Language to IDL Mapping Portability Interfaces and Application Programming
Interfaces. The affected classes are:

j avax. rm . CORBA. St ub
javax. rm . CORBA Ui |
j avax. rm . Port abl eRenpt eObj ect

These classes are able to optionally delegate their methods to separate implementation
classes, which can be provided by ORB vendors.

SubDelegate

The implementation delegate class for j avax. r mi . CORBA. St ub must implement
the following interface for per-instance delegation:

package javax.rm . CORBA;

public interface StubDel egate {
i nt hashCode(Stub sel f);
bool ean equal s(Stub self, java.lang. Object obj);
String toString(Stub self);

voi d connect (Stub self, org.ong. CORBA. ORB orb)
throws java.rm . Renot eExcepti on;

void witeCbject(Stub self, java.io.bjectQutputStream s)
throws java.io.| OException;

void readObj ect (Stub self, java.io.ObjectlnputStreams)

throws java.io.| OException,
Cl assNot FoundExcept i on;

Javato IDL Mapping: Portability Interfaces 1-59

The above methods are called by the corresponding methods of
j avax. rm . CORBA. St ub when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.2 UtilDelegate

The implementation delegate class for j avax. rmi . CORBA. Ut i | must implement
the following interface for per-class delegation:

package javax.rm . CORBA;
public interface Uil Del egate {

java. rm . Renot eExcepti on nmapSyst enExcepti on(
or g. ong. CORBA. Syst enExcepti on ex);

void witeAny(org. ong. CORBA. portabl e. Qut put St ream out,
j ava. | ang. Obj ect obj);

j ava. | ang. Obj ect readAny(
org. ong. CORBA. portable.lnputStreamin);

void witeRenot eObj ect (
or g. ong. CORBA. port abl e. Qut put St r eam out
j ava. | ang. Obj ect obj);

void witeAbstract Object(
or g. ong. CORBA. port abl e. Qut put St r eam out ,
j ava. | ang. Obj ect obj);

void registerTarget(Tie tie, java.rni.Renpte target);

voi d unexport Cbject(java.rm . Renpte target)
throws java.rm . NoSuchOhj ect Excepti on;

Tie getTie(java.rn .Renote target);

Val ueHandl er creat eVal ueHandl er () ;

String get Codebase(d ass cl z);

Class | oadC ass(String classNanme, String renoteCodebase,
Cl assLoader | oader)

t hrows C assNot FoundExcepti on;

bool ean i sLocal (Stub stub)
throws java.rm . Renot eException;

java.rm . Renot eExcepti on w apExcepti on(Throwabl e obj);

1-60 Javato IDL Mapping, v1.3 September 2003

September 2003

1.5.3.3

1534

j ava. | ang. Obj ect copyObj ect (j ava. | ang. bj ect obj,
org. ong. CORBA. ORB or b)
throws java.rm . Renot eExcepti on;

java. |l ang. Object[] copyObjects(java.lang. Qbject[] obj,
org. ong. CORBA. ORB or b)
throws java.rm . Renot eExcepti on;

}

The above methods are called by the corresponding methods of
j avax. rm . CORBA. Uti | when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

PortableRemoteObjectDel egate

The implementation delegate class for j avax. rni . Port abl eRenot ebj ect
must implement the following interface for per-class delegation:

package javax.rm . CORBA;
public interface Portabl eRenot eCbj ect Del egate {

voi d export Qbject(java.rm .Renmote obj)
throws java.rm . Renot eException;

java.rm . Remote toStub (java.rm . Renote obj)
t hrows NoSuchObj ect Excepti on;

voi d unexport Cbj ect(java.rm . Renote obj)
t hrows NoSuchCbj ect Excepti on;

java.l ang. Obj ect narrow (java.l ang. Qbj ect narrowrrom
Cl ass narrowlo)
throws C assCast Excepti on;

voi d connect (java.rm .Renpte target,
java.rm . Renote source)
throws java.rm . Renot eException;

}

The above methods are called by the corresponding methods of
j avax. rm . Port abl eRenot eObj ect when delegation has been specified as
described in Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

Delegation Mechanism

Alternate implementations of the standard API classes are enabled by setting system
properties or placing entries in the orb.properties file. The names of the new system
properties are;

Javato IDL Mapping: Portability Interfaces 1-61

j avax. rm . CORBA. St ubd ass
javax.rm . CORBA. Uil d ass
j avax. rm . CORBA. Port abl eRenpt e(bj ect d ass

For security reasons, each replaceable API class reads its implementation delegate
class system property at static initialization time and uses this information to set up
implementation delegation if this has been specified. The delegation arrangement thus
established cannot be changed subsequently. The search order for implementation
delegate class names is:

1. The system properties
2. The orb.properties file

For each implementation delegate class, an instance is created using the

Cl ass. newl nst ance() method. For the Ut i | and Port abl eRenpt e(hj ect
delegate classes, this is a singleton instance. For the St ub delegate class, there is one
delegate instance per stub object. The methods in the standard API classes test if a
delegate instance exists and if so, forward the method call on to the delegate instance.

1.6 Application Programming I nterfaces

1-62

One new API class is introduced to support RMI/IDL implementations.

1.6.1 PortableRemoteObject

Thej avax. rni . Port abl eRenpt eCbj ect classisintended to act as a base class
for RMI/IDL server implementation classes (see Section 1.2.3.1, “Stubs and remote
implementation classes,” on page 1-4).

/'l Java
public class Portabl eRenpt ehj ect {

prot ect ed Port abl eRenpt ehj ect ()
throws java.rm . RenoteException { ... }

public static void exportCbject(java.rm.Renmpte obj)
throws java.rm . RenoteException { ... }

public static java.rm .Renpte toStub(java.rm . Renmpte obj)
throws java.rm . NoSuchObj ect Exception { ... }

public static void unexportCbject(java.rm .Renpte obj)
throws java.rm . NoSuchObj ect Exception { ... }

public static java.lang. Qbject narrow
j ava. | ang. Obj ect obj, Cass newd ass)
throws O assCast Exception { ... }

public static void connect(

Javato IDL Mapping, v1.3 September 2003

1

September 2003

java.rm . Renpte target, java.rmn .Renote source)
throws java.rm . RenoteException { ... }

}

The protected constructor is called by the derived implementation class to initialize the
base class state.

Server side implementation objects may either inherit from

j avax. rm . Port abl eRenot eObj ect or they may simply implement an
RMI/IDL remote interface and then use the expor t Cbj ect method to register
themselves as a server object.

A call to export Obj ect with no objects exported creates a non-daemon thread that
keeps the Java virtual machine alive until all exported objects have been unexported by
calling unexport Cbj ect .

It is up to the implementation to decide when to actualy export (i.e., connect) remote
objects. It may be done in the Por t abl eRenpt eObj ect constructor (for objects
that subclass Por t abl eRenot ehj ect) or in the export Cbj ect method, or it
may be deferred until the remote object is actually written to an Qut put St r eam

It isan error to call export Obj ect on an object that is already exported.

The t oSt ub method takes a server implementation object and returns a stub object
that can be used to access that server object. The argument object must currently be
exported, either because it is a subclass of Por t abl eRenot ehj ect or by virtue of
aprevious call to Port abl eRenot eCbj ect . export Obj ect . If the object is not
currently exported, a NoSuchObjectException isthrown. The returned stub
implements the same RMI/IDL remote interfaces as the implementation object. If an
RMI/IDL Tieclassis available for the given object, thet oSt ub method will return an
I1OP stub; otherwise, it will return a JRMP stub. The t oSt ub method may be passed
a stub, in which case it simply returns this stub.

The stub returned by t oSt ub has the same connection status as the target
implementation object passed to t oSt ub. So if the target object is connected, the
returned stub is connected to the same ORB. If the target object is unconnected, the
returned stub is unconnected.

The unexport Cbj ect method is used to deregister a currently exported server
object from the ORB runtimes, allowing the object to become available for garbage
collection. If the object is not currently exported, a NoSuchObjectException is
thrown. This is implemented by calling through to Ut i | . unexport Obj ect .

The nar r ow method takes an object reference or an object of an RMI/IDL abstract
interface type and attempts to narrow it to conform to the given newCl ass RMI/IDL
type. If the operation is successful, the result will be an object of type newC ass;
otherwise, an exception will be thrown. If obj is null, then nar r ow returns null.

The connect method makes the remote object t ar get ready for remote
communication using the same communications runtime® as sour ce. Connection
normally happens implicitly when the object is sent or received as an argument on a
remote method call, but it is sometimes useful to do this by making an explicit call.

Javato IDL Mapping: Application Programming Interfaces 1-63

Thet ar get object may be either an RMI/IDL stub or an exported RMI/IDL
implementation object, and the sour ce object may also be either an RMI/IDL stub or
an exported RMI/IDL implementation object.

If t ar get isalready connected to the same communications runtime as sour ce, then
connect takesno action. Otherwise, t ar get must be an unconnected object (i.e., an
RMI/IDL CORBA stub without a delegate or an implementation object whose
RMI/IDL tie has not been associated with an ORB), and sour ce must be a connected
object (i.e., an RMI/IDL CORBA stub with a delegate or an implementation object
with an RMI/IDL tie that has been associated with an ORB), or else a
RemoteException isthrown. Thet ar get object is connected to the same ORB as
sour ce by calling the St ub. connect method if it is a stub (see Section 1.5.1.2,
“Stub,” on page 1-44) or by associating its tie with an ORB if it is an implementation
object.

RMI/IDL implementation objects may be connected implicitly by being passed to
Uil.witeRenoteObject orUil.witeAbstract Cbject.RMI/IDL stubs
may be connected implicitly by being passed to Qut put Stream wite_CObj ect.
Connecting an implementation object is not the same as exporting it, and RMI/IDL
implementation objects may be unconnected when first exported. RMI/IDL
implementation objects are implicitly connected when they are exported to JRMP, and
RMI-JRMP stubs are implicitly connected when they are created.

1.7 Generated IDL File Sructure

1-64

This section is not part of the formal specification of the Java Language to OMG IDL
Mapping, but it contains some suggestions for generated file structure.

Tool vendors may choose to map each RMI/IDL interface, value type, or exception
type to a separate .idl file. This follows the normal Java style and may be easier for
Java RMI/IDL programmers to maintain than requiring that (say) all OMG IDL
definitions be put into a single OMG IDL file.

This approach does raise some issues for the generated OMG IDL, which are briefly
worth mentioning.

First, the use of separate .idl files requires the use of “reopenable’” modules, so that
separate files can have separate free-standing module definitions.

Second, although OMG IDL permits forward references to OMG IDL interfaces, it
does not support forward references to structs or exceptions, and there are some limits
on the use of interface references. Any forward references to interfaces must be
satisfied by later definitions of those interfaces.

3.For I1OP, the communicationsruntimeisan ORB; for JRMP, it isthe JRM P transport
subsystem.

Javato IDL Mapping, v1.3 September 2003

1

One possible way of dealing with these difficulties is to use an OMG IDL file layout
similar to the following:

1

N o g A

The entire OMG IDL definition is bracketed in standard C pre-processor boilerplate
used to guarantee it is only included once;

#ifndef __foo
#define _ foo_

#endif

An OMG IDL forward reference is generated for each OMG IDL interface that is
referenced. (This may require entering and exiting the appropriate target module.)

An OMG IDL forward reference is generated for each OMG IDL value type that is
referenced. (This may require entering and exiting the appropriate target module.)

Each exception referenced in the OMG IDL is #included, in arbitrary order.
If the generated OMG IDL is an interface, then #include any inherited interfaces.
If the generated OMG IDL is a value type, then #include any inherited value types.

If there are any references to the OMG IDL types ::java::rmi::Remote,
java::io::Serializable, ::java::io::Externalizable, or ::java::lang::_Object, then
generate the following bracketed definitions as required.

#ifndef __java_rmi_Remote

#define __java_rmi_Remote__
module java {
module rmi {

typedef Object Remote;
|3
|3
#endif

#ifndef __java_io_Serializable___

#define __java io_Serializable
module java {
module io {

typedef any Serializable;
|3
|3
#endif

#ifndef __java_io_Externalizable__
#define __java_io_Externalizable
module java {
module io {
typedef any Externalizable;
|3
|3

September 2003 Javato IDL Mapping: Generated IDL File Structure 1-65

1-66

#endif

#ifndef __java_lang_Object___

#define __java lang_Object___
module java {
module lang {

typedef any _Object;
|3
|3
#endif

This allows different OMG IDL files in the same module to independently define
any necessary typedefs.

8. For each OMG IDL sequence type that is referenced, generate a bracketed value
definition similar to the following.

#ifndef __org_omg_boxedRMI_fred_seql Stuff

#define __org_omg_boxedRMI_fred_seql_ Stuff

module org {

module omg {

module boxedRMI {

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

b
b
}.

b
#endif

This allows different OMG IDL files to independently define any necessary
sequence val uetypes.

9. Generate the target OMG IDL in the appropriate module.
10. #include any interfaces to which forward references have been declared.
11. #include any vaue types to which forward references have been declared.

Below is an example of how achunk of RMI/IDL code would be mapped to OMG IDL
using this approach.

1.7.1 The Java Definition

Here's a sample RMI/IDL interface, where the referenced type f r ed. St uf f isan
RMI/IDL valuetype, fred. Test 1 and f r ed. Test 2 are RMI/IDL remote interface
types, and f r ed. Qur Excepti on isan RMI/IDL exception type.

/'l Java
package fred;

Javato IDL Mapping, v1.3 September 2003

September 2003

import java.rm.*;

public interface Test extends Testl {

voi d noop() throws RenoteException;

String echo(String arg) throws RenpteException;

Stuff echoStuff(Stuff p) throws RenoteException;

Test echoTest (Test t) throws RenoteException;

int[] echolnts(int args[]) throws RenoteException;
Stuff[] echoStuffs(Stuff args[]) throws RenoteException;

voi d manyArgs(char a, byte b, short ¢, int d,
long e, float f, double g) throws RenoteException;

Test2 fetchTest2(Obj ect x) throws RenpteException;

voi d t hrowAnException() throws RenoteException,
Qur Excepti on;

1.7.2 The Generated OMG IDL Definition

// DL
#ifndef _ fred Test
#define _ fred _Test

#include “orb.idl”

module fred {
interface Test2;
valuetype Stuff;

b

#include “fred/OurEx.idl”
#include “fred/Testl.idl”

#ifndef __java_lang_Object__
#define __java lang_Object___
module java {
module lang {
typedef any _Object;
|3
|3
#endif

Javato IDL Mapping: Generated IDL File Structure

1-67

#ifndef __org_omg_boxedRMI_seql long_
#define __org_omg_boxedRMI_seql_long_
module org {
module omg {
module boxedRMI {

valuetype seql_long sequence<long>;
#pragma ID segl_long “RMI:[I:0000000000000000”
|3
|3
|3
#endif

#ifndef __org_omg_boxedRMI_fred_seql_ Stuff

#define __org_omg_boxedRMI_fred_seql_Stuff

module org {

module omg {

module boxedRMI {

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

’

}
}
}.
I3

endif

module fred {
interface Test: Test1 {
void noop();

::CORBA::WStringValue echo(in ::CORBA::WStringValue arg0);
::fred::Stuff echoStuff(in ::fred::Stuff arg0);
::fred::Test echoTest(in ::fred::Test arg0);

:rorg::omg::boxedRMlI::seql_long echolnts(
in ::org::omg::boxedRMI::seql_long argO0);

::org::omg::boxedRMI::fred::seql_Stuff echoStuffs(
in ::org::omg::boxedRMI::fred::seql_Stuff arg0);

void manyArgs(
in wchar argO,
in octet arg1,
in short arg2,
in long arg3,
in long long arg4,
in float arg5,
in double arg6);

1-68 Javato IDL Mapping, v1.3 September 2003

:fred::Test2 fetchTest2(::java::lang::_Object);
void throwAnException() raises (::fred::Ourgx);
¥
#pragma ID Test “RMI:fred.Test:0000000000000000”
b

#include “fred/Test2.idl”
#include “fred/Stuff.idl”

#endif

September 2003 Javato IDL Mapping: Generated IDL File Structure 1-69

1-70 Javato IDL Mapping, v1.3 September 2003

| ndex

A

Abstract interfaces 1-30
APl class 1-62

Arrays 1-5, 1-21
ASCIl 1-8

B
Boolean properties 1-12

C
Case-sensitive names 1-9
Class 1-4
Class downloading 1-36
Class |oaders 1-33
Codebase access 1-37
Codebase selection 1-36
Codebase transmission 1-37
Compile-time constants 1-13, 1-17
compliance v
Constant foo 1-9
Constants 1-13
Constructors 1-16
Containing module 1-26
CORBA
contributors vi
documentation set iv
CORBA Object Reference Types 1-26
core, compliance v
Custom marshaling format 1-39

D
Datamember 1-21

Delegation mechanism 1-61

E

Entity Types 1-6, 1-26
Exception subclassing 1-23
Exception type 1-24
exception type 1-5
Exceptions 1-23

G
Generated IDL file structure 1-64
Generated OMG IDL definition 1-67

I
IDL names 1-7
I1OP 1-2
Illegal characters 1-8
Implementation Classes 1-30
Inherited base class 1-15
Inherited interfaces 1-11, 1-15
Inner classes 1-8
interoperability, compliance v
interworking

compliance v
IOR 1-32

J

Javaclass 1-4

Java definition 1-66
Javanames 1-7

September 2003

Java names that clash with IDL keywords 1-7
Javanames with illegal IDL identifier characters 1-8
Java names with leading underscores 1-7

Java Remote Method Invocation (RMI) 1-1

Java String Type 1-5

javalang.Class 1-21

javalang.String 1-21

javarmi.Remote 1-11

L
Leading underscore 1-7
Local stubs 1-55

M

Mapping CORBA Object Reference Types 1-26
Mapping for javalang.Class 1-21

Mapping for javalang.String 1-21

Mapping for Non-conforming Classes and Interfaces 1-27
Mapping for RMI/IDL Arrays 1-21

Mapping for RMI/IDL Remote Interfaces 1-10
Mapping for RMI/IDL Value Types 1-15
Mapping IDL Entity Types 1-26

Mapping Implementation Classes 1-30
Mapping Java Namesto IDL Names 1-7
Mapping packages to modules 1-7

Mapping RMI/IDL Exceptions 1-23

Mappings for Primitive Types 1-10

Marshaling 1-48

Method foo 1-9

method names 1-8

Method names that collide with other names 1-9
Methods 1-13

N

Names for inner classes 1-8
Non-conforming Classes and Interfaces 1-27
Non-conforming Javaclasses 1-28

0]

Object Management Group iii
object reference type 1-6
OMGIDL 1-1

opaque 1-17

Opague type 1-17

ORB instances 1-41
Overloaded method names 1-8

P

Packages 1-7

Parameter type 1-21

Portability Interfaces 1-42
PortableRemoteObject 1-62
PortableRemoteObjectDelegate 1-61
Primitivefields 1-18

Primitive Types 1-10

primitive types 1-2

Property accessor methods 1-11
Public fields 1-17

R
Read-only properties 1-11
Read-write properties 1-11

Javato IDL Language Mapping, v1.3 Index-1

| ndex

remote implementation class 1-4

Remote interface 1-4
Remote Interfaces 1-10
Repository ID 1-14, 1-18
Restrictions 1-5

Return type 1-21

RMI remote interface 1-3
RMI/IDL 1-2

RMI/IDL Subset of Java 1-2
RMI/IDL vauetype 1-4
Run-Time Issues 1-31
Runtime limitations 1-41

S

Special Case Mappings 1-7
Stub class 1-33

stub class 1-4

Stub classes 1-54
StubDelegate 1-59
Subclassing 1-24

Subclassing of exception types 1-23

Index-2

T
TAG_RM|_CUSTOM_MAX_STREAM_FORMAT

component 1-41
Tieclass 1-33
Tieclasses 1-54

U

Underscores 1-7

Unicode 1-8

UNKNOWN exceptions 1-36
Unmarshaling 1-50
UtilDelegate 1-60

\Y
Vauetype 1-4, 1-24
Vaue Types 1-15

w
writeObject 1-20

Javato IDL Language Mapping, v1.3

September 2003

Javato IDL Mapping, v1.3
Reference Sheet

Thisisarevision of the Javato IDL Language Mapping specification that includes changes to Chapter 1.
You will find specific changes marked with changebars. The source document for this version was
ptc/03-01-17.

Document history follows:
Version 1.2: formal/02-08-06, source document was ptc/02-01-12.
Version 1.1: formal/01-06-07

Version 1.0: formal/99-07-59

September 22, 2003

September 22, 2003

	Contents
	Acknowledgements

	Java‘ Language to IDL Mapping
	1.1 Overview
	1.2 The RMI/IDL Subset of Java
	1.2.1 Overview of Conforming RMI/IDL Types
	1.2.2 Primitive Types
	1.2.3 RMI/IDL Remote Interfaces
	1.2.4 RMI/IDL Value Types
	1.2.5 RMI/IDL Arrays
	1.2.6 RMI/IDL Exception Types
	1.2.7 CORBA Object Reference Types
	1.2.8 IDL Entity Types

	1.3 The IDL Mapping
	1.3.1 Overview
	1.3.2 Mapping Java Names to IDL Names
	1.3.3 Mappings for Primitive Types
	1.3.4 Mapping for RMI/IDL Remote Interfaces
	1.3.5 Mapping for RMI/IDL Value Types
	1.3.6 Mapping for RMI/IDL Arrays
	1.3.7 Mapping RMI/IDL Exceptions
	1.3.8 Mapping CORBA Object Reference Types
	1.3.9 Mapping IDL Entity Types
	1.3.10 Mapping for Non-conforming Classes and Interfaces
	1.3.11 Mapping Abstract Interfaces
	1.3.12 Mapping Implementation Classes

	1.4 Run-Time Issues
	1.4.1 Subclasses of Value Objects
	1.4.2 Locating Stubs for Remote References
	1.4.3 Narrowing
	1.4.4 Allocating Ties for Remote Values
	1.4.5 Wide Character Support
	1.4.6 Locating Stubs and Ties
	1.4.7 Mapping RMI Exceptions to CORBA Exceptions
	1.4.8 Mapping CORBA System Exceptions to RMI Exceptions
	1.4.9 Code Downloading
	1.4.10 Custom Marshaling Format
	1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
	1.4.12 RMICustomMaxStreamFormat Service Context
	1.4.13 Marshaling RMI/IDL Arrays
	1.4.14 Creating ORB Instances
	1.4.15 Runtime Limitations

	1.5 Portability Interfaces
	1.5.1 Portability APIs
	1.5.2 Generated classes
	1.5.3 Replaceability of API Implementations

	1.6 Application Programming Interfaces
	1.6.1 PortableRemoteObject

	1.7 Generated IDL File Structure
	1.7.1 The Java Definition
	1.7.2 The Generated OMG IDL Definition

