
1

DRAFT (7/10/93): Distribution Restricted

Chapter 36 Introduction 323
36.1 What’s in a widget? 324

36.2 Widgets are event-driven325

36.3 Tk vs. Xlib 325

36.4 Square: an example widget326

36.5 Design for re-usability 328

Chapter 37 Creating Windows 329
37.1 Tk_Window structures 329

37.2 Creating Tk_Windows 329

37.3 Setting a window’s class 331

37.4 Deleting windows 332

37.5 Basic operations on Tk_Windows 332

37.6 Create procedures333

37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337
38.1 Tk_ConfigureWidget 337

38.1.1 Tk_ConfigSpec tables 339
38.1.2 Invoking Tk_ConfigureWidget 341
38.1.3 Errors 342
38.1.4 Reconfiguring 342
38.1.5 Tk_ConfigureInfo 342
38.1.6 Tk_FreeOptions 343
38.1.7 Other uses for configuration tables 343

38.2 Resource caches343
38.2.1 Graphics contexts 344
38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes347

38.6 The square configure procedure348

38.7 The square widget command procedure349

2

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353
39.1 X events 353

39.2 File events 357

39.3 Timer events 359

39.4 Idle callbacks 360

39.5 Generic event handlers361

39.6 Invoking the event dispatcher362

Chapter 40 Displaying Widgets 365
40.1 Delayed redisplay 365

40.2 Double-buffering with pixmaps 367

40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371
41.1 Basics 371

41.2 Delayed cleanup 372

Chapter 42 Managing the Selection377
42.1 Selection handlers377

42.2 Claiming the selection 380

42.3 Retrieving the selection381

Chapter 43 Geometry Management383
43.1 Requesting a size for a widget383

43.2 Internal borders 385

43.3 Grids 386

43.4 Geometry managers387

43.5 Claiming ownership 388

43.6 Retrieving geometry information388

43.7 Mapping and setting geometry389

Part IV:

Tk’ s C Interfaces

322

DRAFT (7/10/93): Distribution Restricted

323

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 36
Intr oduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-
lection of library procedures that you can invoke from C code in the enclosing application.
Although you can do many interesting things with Tk without writing any C code, just by
writing Tcl scripts forwish, you’ll probably find that most large GUI applications require
some C code too. The most common reason for using Tk’s C interfaces is to build new
kinds of widgets. For example, if you write a Tk-based spreadsheet you’ll probably need
to implement a new widget to display the contents of the spreadsheet; if you write a chart-
ing package you’ll probably build one or two new widgets to display charts and graphs in
various forms; and so on. Some of these widgets could probably be implemented with
existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the
needs of your application can probably do the job more simply and efficiently than any of
Tk’s general-purpose widgets. Typically you’ll build one or two new widget classes to dis-
play your application’s new objects, then combine your custom widgets with Tk’s built-in
widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most of Tk’s
library procedures exist for this purpose, and most of the text in this part of the book is ori-
ented towards widget builders. However, you can also use Tk’s library procedures to build
new geometry managers; this is described in Chapter 43. Or, you may simply need to pro-
vide access to some window system feature that isn’t supported by the existing Tcl com-
mands, such as the ability to set the border width of a top-level window. In any event, the
new features you implement should appear as Tcl commands so that you can use them in
scripts. Both the philosophical issues and the library procedures discussed in Part III apply
to this part of the book also.

FIGURE 36

TABLE 36

324 Introduction

DRAFT (7/10/93): Distribution Restricted

36.1 What’ s in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C
procedures that implement the widget’s look and feel. More complex widgets may have
additional data structures and procedures besides theses, but all widgets have at least these
basic components.

 A widget record is the C data structure that represents the state of a widget. It
includes all of the widget’s configuration options plus anything else the widget needs for
its own internal use. For example, the widget record for a label widget contains the label’s
text or bitmap, its background and foreground colors, its relief, and so on. Each instance of
a widget has its own widget record, but all widgets of the same class have widget records
with the same structure. One of the first things you will do when designing a new widget
class is to design the widget record for that class.

Of the widget’s six core procedures, two are Tcl command procedures. The first of
these is called thecreate procedure; it implements the Tcl command that creates widgets
of this class. The command’s name is the same as the class name, and the command
should have the standard syntax described in Section XXX for creating widgets. The com-
mand procedure initializes a new widget record, creates the window for the widget, and
creates the widget command for the widget. It is described in more detail in Chapters 37
and 38.

The second command procedure is thewidget command procedure; it implements the
widget commands for all widgets of this class. When the widget command is invoked its
clientData argument points to the widget record for a particular widget; this allows
the same C procedure to implement the widget commands for many different widgets (the
counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class is itsconfigure procedure. Given one or
more options in string form, such as “-background red”, it parses the options and
fills in the widget record with corresponding internal representations such as anXColor
structure. The configure procedure is invoked by the create procedure and the widget com-
mand procedure to handle configuration options specified on their command lines. Chap-
ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is theevent procedure. It is invoked by Tk’s event dis-
patcher and typically handles exposures (part of the window needs to be redrawn), win-
dow size changes, focus changes, and the destruction of the window. The event procedure
does not normally deal with user interactions such as mouse motions and key presses;
these are usually handled with class bindings created with thebind command as
described in Chapter XXX. Chapter 39 describes the Tk event dispatcher, including its
facilities for managing X events plus additional features for timers, event-driven file I/O,
and idle callbacks

The fifth core procedure is thedisplay procedure. It is invoked to redraw part or all of
the widget on the screen. Redisplays can be triggered by many things, including window
exposures, changes in configuration options, and changes in the input focus. Chapter 40

36.2 Widgets are event-driven 325

DRAFT (7/10/93): Distribution Restricted

discusses several issues related to redisplay, such as deferred redisplay, double-buffering
with pixmaps, and Tk’s support for drawing 3-D effects.

The last of a widget’s core procedures is itsdestroy procedure. This procedure is
called when the widget is destroyed and is responsible for freeing up all of the resources
allocated for the widget such as the memory for the widget record and X resources such as
colors and pixmaps. Widget destruction is tricky because the widget could be in use at the
time it is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-
tial problems.

36.2 Widgets are event-driven

Part II described how the Tcl scripts for Tk applications are event-driven, in that they con-
sist mostly of short responses to user interactions and other events. The C code that imple-
ments widgets is also event-driven. Each of the core procedures described in the previous
section responds to events of some sort. The create, widget command, and configure pro-
cedures all respond to Tcl commands. The event procedure responds to X events, and the
display and destroy procedures respond to things that occur either in X or in Tcl scripts.

36.3 Tk vs. Xlib

Xlib is the C library package that provides the lowest level of access to the X Window
System. Tk is implemented using Xlib but it hides most of the Xlib procedures from the C
code in widgets, as shown in Figure 36.1. For example, Xlib provides a procedureXCre-
ateWindow to create a new windows, but you should not use it; instead, callTk_Cre-
ateWindowFromPath or one of the other procedures provided by Tk for this purpose.
Tk’s procedures call the Xlib procedures but also do additional things such as associating
a textual name with the window. Similarly, you shouldn’t normally call Xlib procedures
like XAllocColor to allocate colors and other resources; call the corresponding Tk pro-

Xlib

Tk

Widget

Figure 36.1.Tk hides many of the Xlib interfaces from widgets, but widgets still invoke Xlib
directly for a few purposes such as drawing on the screen.

326 Introduction

DRAFT (7/10/93): Distribution Restricted

cedures likeTk_GetColor instead. In the case of colors, Tk calls Xlib to allocate the
color, but it also remembers the colors that are allocated; if you use the same color in
many different places, Tk will only communicate with the X server once.

However, Tk does not totally hide Xlib from you. When widgets redisplay themselves
they make direct calls to Xlib procedures such asXDrawLine andXDrawString. Fur-
thermore, many of the structures manipulated by Tk are the same as the structures pro-
vided by Xlib, such as graphics contexts and window attributes. Thus you’ll need to know
quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you
are familiar with the following concepts from Xlib:

• Window attributes such asbackground_pixel, which are stored inXSetWindo-
wAttributes structures.

• Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.

• Procedures for redisplaying, such asXDrawLine andXDrawString.

• Event types and theXEvent structure.

You’ll probably find it useful to keep a book on Xlib nearby when reading this book and to
refer to the Xlib documentation for specifics about the Xlib structures and procedures. If
you haven’t used Xlib before I’d suggest waiting to read about Xlib until you need the
information. That way you can focus on just the information you need and avoid learning
about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldn’t need to know anything about any other X toolkit or
library. For example, Tk is completely independent from the Xt toolkit so you don’t need
to know anything about Xt. For that matter, if you’re using Tk youcan’t use Xt: their wid-
gets are incompatible and can’t be mixed together.

36.4 Square: an example widget

I’ll use a simple widget called “square” for examples throughout Part IV. The square wid-
get displays a colored square on a background as shown in Figure 36.2. The widget sup-
ports several configuration options, such as colors for the background and for the square, a
relief for the widget, and a border width used for both the widget and the square. It also
provides three widget commands:configure, which is used in the standard way to
query and change options;position, which sets the position of the square’s upper-left
corner relative to the upper-left corner of the window, andsize, which sets the square’s
size. Figure 36.2 illustrates theposition andsize commands.

Given these simple commands many other features can be written as Tcl scripts. For
example, the following script arranges for the square to center itself over the mouse cursor
on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes
that the square widget is named “.s”.

36.4 Square: an example widget 327

DRAFT (7/10/93): Distribution Restricted

proc center {x y} {
set a [.s size]
.s position [expr $x-($a/2)] [expr $y-($a/2)]

}
bind .s <1> {center %x %y}
bind .s <B1-Motion> {center %x %y}

Note: For this particular widget it would probably make more sense to use configuration options
instead of theposition andsize commands; I made them widget commands just to
illustrate how to write widget commands.

Figure 36.2.A sequence of scripts and the displays that they produce. Figure (a) creates a square
widget, Figure (b) invokes theposition widget command to move the square within its widget,
and Figure (c) changes the size of the square.

square .s
pack .s
wm title .s "Square widget example"

.s position 100 75

.s size 40

(a) (b)

(c)

328 Introduction

DRAFT (7/10/93): Distribution Restricted

The implementation of the square widget requires about 320 lines of C code exclud-
ing comments, or about 750 lines in a copiously-commented version. The square widget
doesn’t use all of the features of Tk but it illustrates the basic things you must do to create
a new widget. For examples of more complex widgets you can look at the source code for
some of Tk’s widgets; they have the same basic structure as the square widget and they
use the same library procedures that you’ll read about in the chapters that follow.

36.5 Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If
you do this then it may be possible for you or someone else to use your widget in new
ways that you didn’t foresee when you created it. Here are a few specific things to think
about:

1. Store all the information about the widget in its widget record. If you use static or glo-
bal variables to hold widget state then it may not be possible to have more than one
instance of the widget in any given application. Even if you don’t envision using more
than one instance per application, don’t do anything to rule this out.

2. Make sure that all of the primitive operations on your widget are available through its
widget command. Don’t hard-wire the widget’s behavior in C. Instead, define the
behavior as a set of class bindings using thebind command. This will make it easy to
change the widget’s behavior.

3. Provide escapes to Tcl. Think about interesting ways that you can embed Tcl commands
in your widget and invoke them in response to various events. For example, the actions
for button widgets and menu items are stored as a Tcl commands that are evaluated
when the widgets are invoked, and canvases and texts allow you to associate Tcl com-
mands with their internal objects in order to give them behaviors.

4. Organize the code for your widget in one or a few files that can easily be linked into
other applications besides the one you’re writing.

329

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 37
Creating Windows

This chapter presents Tk’s basic library procedures for creating windows. It describes the
Tk_Window type, which is used as a token for windows, then introduces the Tk proce-
dures for creating and deleting windows. Tk provides several macros for retrieving infor-
mation about windows, which are introduced next. Then the chapter discusses what
should be in the create procedure for a widget, using the square widget as an example. The
chapter closes with a discussion of delayed window creation. See Table 37.1 for a sum-
mary of the procedures discussed in the chapter.

37.1 Tk_Window structures

Tk uses a token of typeTk_Window to represent each window. When you create a new
window Tk returns aTk_Window token, and you must pass this token back to Tk when
invoking procedures to manipulate the window. A Tk_Window is actually a pointer to a
record containing information about the window, such as its name and current size, but Tk
hides the contents of this structure and you may not read or write its fields directly. The
only way you can manipulate aTk_Window is to invoke procedures and macros provided
by Tk.

37.2 Creating Tk_W indows

Tk applications typically use two procedures for creating windows:Tk_CreateMain-
Window andTk_CreateWindowFromPath. Tk_CreateMainWindow creates a

FIGURE 37

TABLE 37

330 Creating Windows

DRAFT (7/10/93): Distribution Restricted

new application; it’s usually invoked in the main program of an application. Before invok-
ing Tk_CreateMainWindow you should create a Tcl interpreter to use for the applica-
tion.Tk_CreateMainWindow takes three arguments, consisting of the interpreter plus
two strings:

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

ThescreenName argument gives the name of the screen on which to create the main
window. It can have any form acceptable to your X server. For example, on most UNIX-
like systems “unix:0” selects the default screen of display 0 on the local machine, or
“ginger.cs.berkeley.edu:0.0” selects screen 0 of display 0 on the machine
whose network address is “ginger.cs.berkeley.edu”. ScreenName may be
specified asNULL, in which case Tk picks a default server. On UNIX-like systems the
default server is normally determined by theDISPLAY environment variable.

Table 37.1.A summary of basic procedures for window creation and deletion.

Tk_Window Tk_CreateMainWindow(Tcl_Interp *interp,
char *screenName, char *appName)

Creates a new application and returns a token for the application’s main win-
dow. ScreenName gives the screen on which to create the main window (if
NULL then Tk picks default), andappName gives a base name for the appli-
cation. If an error occurs, returnsNULL and stores an error message in
interp->result.

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName)

Creates a new window intkwin’s application whose path name ispath-
Name. If screenName isNULL the new window will be an internal win-
dow; otherwise it will be a top-level window onscreenName. Returns a
token for the new window. If an error occurs, returnsNULL and stores an
error message ininterp->result.

Tk_SetClass(Tk_Window tkwin, char *class)
Setstkwin’s class toclass.

Tk_DestroyWindow(TkWindow tkwin)
Destroytkwin and all of its descendants in the window hierarchy.

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

Returns the token for the window whose path name ispathName in the
same application astkwin. If no such name exists then returnsNULL and
stores an error message ininterp->result.

Tk_MakeWindowExist(TkWindow tkwin)
Force the creation of the X window fortkwin, if it didn’t already exist.

37.3 Setting a window’s class 331

DRAFT (7/10/93): Distribution Restricted

The last argument toTk_CreateMainWindow is a name to use for the application,
such as “clock” for a clock program or “mx foo.c” for an editor namedmx editing a
file namedfoo.c. This is the name that other applications will use to send commands to
the new application. Each application must have a unique name; ifappName is already in
use by some other application then Tk adds a suffix like “ #2” to make the name unique.
Thus the actual name of the application may be something like “clock #3” or “mx
foo.c #4”. You can find out the actual name for the application using theTk_Name
macro or by invoking the Tcl command “winfo name .”.

Tk_CreateMainWindow creates the application’s main window, registers its name
so that other applications can send commands to it, and adds all of Tk’s commands to the
interpreter. It returns theTk_Window token for the main window. If an error occurs (e.g.
screenName doesn’t exist or the X server refused to accept a connection) then
Tk_CreateMainWindow returnsNULL and leaves an error message in
interp->result.

Tk_CreateWindowFromPath adds a new window to an existing application. It’s
the procedure that’s usually called when creating new widgets and it has the following
prototype:

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp,
Tk_Window tkwin, char *pathName, char *screenName);

Thetkwin argument is a token for an existing window; its only purpose is to identify the
application in which to create the new window. PathName gives the full name for the
new window, such as “.a.b.c”. There must not already exist a window by this name,
but its parent (for example, “.a.b”) must exist. IfscreenName isNULL then the new
window is an internal window; otherwise the new window will be a top-level window on
the indicated screen.Tk_CreateWindowFromPath returns a token for the new win-
dow unless an error occurs, in which case it returnsNULL and leaves an error message in
interp->result.

Tk also provides a third window-creation procedure calledTk_CreateWindow.
This procedure is similar toTk_CreateWindowFromPath except that the new win-
dow’s name is specified a bit differently. See the reference documentation for details.

37.3 Setting a window’ s class

The procedureTk_SetClass assigns a particular class name to a window. For example,

Tk_SetClass(tkwin, "Foo");

sets the class of windowtkwin to “Foo”. Class names are used by Tk for several pur-
poses such as finding options in the option database and event bindings. You can use any
string whatsoever as a class name when you invokeTk_SetClass, but you should make
sure the first letter is capitalized: Tk assumes in several places that uncapitalized names
are window names and capitalized names are classes.

332 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.4 Deleting windows

The procedureTk_DestroyWindow takes aTk_Window as argument and deletes the
window. It also deletes all of the window’s children recursively. Deleting the main win-
dow of an application will delete all of the windows in the application and usually causes
the application to exit.

37.5 Basic operations on Tk_W indows

Given a textual path name for a window, Tk_NameToWindow may be used to find the
Tk_Window token for the window:

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin);

PathName is the name of the desired window, such as “.a.b.c”, andtkwin is a token
for any window in the application of interest (it isn’t used except to select a specific appli-
cation). NormallyTk_NameToWindow returns a token for the given window, but if no
such window exists it returnsNULL and leaves an error message ininterp->result.

Tk maintains several pieces of information about eachTk_Window and it provides a
set of macros that you can use to access the information. See Table 37.2 for a summary of
all the macros. Each macro takes aTk_Window as an argument and returns the corre-
sponding piece of information for the window. For example iftkwin is aTk_Window
then

Tk_Width(tkwin)

returns an integer value giving the current width oftkwin in pixels. Here are a few of the
more commonly used macros:

• Tk_Width andTk_Height return the window’s dimensions; this information is used
during redisplay for purposes such as centering text.

• Tk_WindowId returns the X identifier for the window; it is needed when invoking
Xlib procedures during redisplay.

• Tk_Display returns a pointer to Xlib’sDisplay structure corresponding to the
window; it is also needed when invoking Xlib procedures.

Some of the macros, likeTk_InternalBorderWidth andTk_ReqWidth, are only
used by geometry managers (see Chapter 43) and others such asTk_Visual are rarely
used by anyone.

37.6 Create procedures 333

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

The create procedure for a widget must do five things: create a newTk_Window; create
and initialize a widget record; set up event handlers; create a widget command for the wid-
get; and process configuration options for the widget. The create procedure should be the
command procedure for a Tcl command named after the widget’s class, and itsclient-

Table 37.2.Macros defined by Tk for retrieving window state. Each macro takes aTk_Window as
argument and returns a result whose type is given in the second column. All of these macros are fast
(they simply return fields from Tk’s internal structures and don’t require any interactions with the X
server).

Macro Name Result Type Meaning

Tk_Attributes XSetWindowAttributes
 *

Window attributes such as border pixel
and cursor.

Tk_Changes XWindowChanges * Window position, size, stacking order.

Tk_Class Tk_Uid Name of window’s class.

Tk_Colormap Colormap Colormap for window.

Tk_Depth int Bits per pixel.

Tk_Display Display X display for window.

Tk_Height int Current height of window in pixels.

Tk_InternalBorderWidth int Width of internal border in pixels.

Tk_IsMapped int 1 if window mapped, 0 otherwise.

Tk_IsTopLevel int 1 if top-level, 0 if internal.

Tk_Name Tk_Uid Name within parent. For main window,
returns application name.

Tk_Parent Tk_Window Parent, orNULL for main window.

Tk_PathName char * Full path name of window.

Tk_ReqWidth int Requested width in pixels.

Tk_ReqHeight int Requested height in pixels.

Tk_Screen Screen * X Screen for window.

Tk_ScreenNumber int Index of window’s screen.

Tk_Visual Visual * Information about window’s visual char-
acteristics.

Tk_Width int Current width of window in pixels.

Tk_WindowId Window X identifier for window.

Tk_X int X-coordinate within parent window.

Tk_Y int Y-coordinate within parent window.

334 Creating Windows

DRAFT (7/10/93): Distribution Restricted

Data argument should be theTk_Window token for the main window of the application
(this is needed in order to create a newTk_Window in the application).

Figure 37.1 shows the code forSquareCmd, which is the create procedure for square
widgets. After checking its argument count,SquareCmd creates a new window for the
widget and invokesTk_SetClass to assign it a class of “Square”. The middle part of
SquareCmd allocates a widget record for the new widget and initializes it. The widget
record for squares has the following definition:

typedef struct {
Tk_Window tkwin;
Display *display;
Tcl_Interp *interp;
int x, y;
int size;
int borderWidth;
Tk_3DBorder bgBorder;
Tk_3DBorder fgBorder;
int relief;
GC gc;
int updatePending;

} Square;

The first field of the record is theTk_Window for the widget. The next field,display,
identifies the X display for the widget (it’s needed during cleanup after the widget is
deleted).Interp holds a pointer to the interpreter for the application. Thex andy fields
give the position of the upper-left corner of the square relative to the upper-left corner of
the window, and thesize field specifies the square’s size in pixels. The last six fields are
used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget recordSquareCmd callsTk_Cre-
ateEventHandler; this arranges forSquareEventProc to be called whenever the
widget needs to be redrawn or when various other events occur, such as deleting its win-
dow or changing its size; events will be discussed in more detail in Chapter 39. Next
SquareCmd callsTcl_CreateCommand to create the widget command for the wid-
get. The widget’s name is the name of the command,SquareWidgetCmd is the com-
mand procedure, and a pointer to the widget record is theclientData for the command
(using a pointer to the widget record asclientData allows a single C procedure to
implement the widget commands for all square widgets;SquareWidgetCommand will
receive a differentclientData argument depending on which widget command was
invoked). ThenSquareCmd callsConfigureSquare to process any configuration
options specified as arguments to the command; Chapter 38 describes how the configura-
tion options are handled. If an error occurs in processing the configuration options then
SquareCmd destroys the window and returns an error. Otherwise it returns success with
the widget’s path name as result.

37.6 Create procedures 335

DRAFT (7/10/93): Distribution Restricted

int SquareCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Tk_Window main = (Tk_Window) clientData;
Square *squarePtr;
Tk_Window tkwin;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR;

}

tkwin = Tk_CreateWindowFromPath(interp, main, argv[1],
(char *) NULL);

if (tkwin == NULL) {
return TCL_ERROR;

}
Tk_SetClass(tkwin, "Square");

squarePtr = (Square *) malloc(sizeof(Square));
squarePtr->tkwin = tkwin;
squarePtr->display = Tk_Display(tkwin);
squarePtr->interp = interp;
squarePtr->x = 0;
squarePtr->y = 0;
squarePtr->size = 20;
squarePtr->bgBorder = NULL;
squarePtr->fgBorder = NULL;
squarePtr->gc = None;
squarePtr->updatePending = 0;

Tk_CreateEventHandler(tkwin,
ExposureMask|StructureNotifyMask, SquareEventProc,
(ClientData) squarePtr);

Tcl_CreateCommand(interp, Tk_PathName(tkwin),
SquareWidgetCmd, (ClientData squarePtr),
(Tcl_CmdDeleteProc *) NULL);

if (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
!= TCL_OK) {

Tk_DestroyWindow(squarePtr->tkwin);
return TCL_ERROR;

}
interp->result = Tk_PathName(tkwin);
return TCL_OK;

}

Figure 37.1.The create procedure for square widgets. This procedure is the command procedure
for thesquare command.

336 Creating Windows

DRAFT (7/10/93): Distribution Restricted

37.7 Delayed window creation

Tk_CreateMainWindow andTk_CreateWindowFromPath create the Tk data
structures for a window, but they do not communicate with the X server to create an actual
X window. If you create aTk_Window and immediately fetch its X window identifier
usingTk_WindowId, the result will beNone. Tk doesn’t normally create the X window
for aTk_Window until the window is mapped, which is normally done by a geometry
manager (see Chapter 43). The reason for delaying window creation is performance.
When aTk_Window is initially created, all of its attributes are set to default values.
Many of these attributes will be modified almost immediately when the widget configures
itself. It’s more efficient to delay the window’s creation until all of its attributes have been
set, rather than first creating the window and then asking the X server to modify the
attributes later.

Delayed window creation is normally invisible to widgets, since the only time a wid-
get needs to know the X identifier for a window is when it invokes Xlib procedures to dis-
play it. This doesn’t happen until after the window has been mapped, so the X window
will have been created by then. If for some reason you should need the X window identi-
fier before aTk_Window has been mapped, you can invokeTk_MakeWindowExist:

void Tk_MakeWindowExist(tkwin);

This forces the X window fortkwin to be created immediately if it hasn’t been created
yet. OnceTk_MakeWindowExist returns,Tk_WindowId can be used to retrieve the
Window token for it.

337

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 38
Configuring Widgets

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-
ally drawing the widget’s contents on the screen. A widget is configured initially as part of
creating it, and it may be reconfigured by invoking its widget command. One of the largest
components of configuring a widget is processing configuration options such as
“-borderwidth 1m”. For each option the textual value must be translated to an inter-
nal form suitable for use in the widget. For example, distances specified in floating-point
millimeters must be translated to integer pixel values and font names must be mapped to
correspondingXFontStruct structures. Configuring a widget also includes other tasks
such as preparing X graphics contexts to use when drawing the widget and setting
attributes of the widget’s window, such as its background color.

This chapter describes the Tk library procedures for configuring widgets, and it pre-
sents the square widget’s configure procedure and widget command procedure. Chapter 40
will show how to draw a widget once configuration is complete.

38.1 Tk_ConfigureW idget

Tk provides three library procedures,Tk_ConfigureWidget, Tk_Configure-
Info, andTk_FreeOptions, that do most of the work of processing configuration
options (see Table 38.1). To use these procedures you first create aconfiguration table that
describes all of the configuration options supported by your new widget class. When creat-
ing a new widget, you pass this table toTk_ConfigureWidget along withargc/
argv information describing the configuration options (i.e. all the arguments in the cre-
ation command after the widget name). You also pass in a pointer to the widget record for

FIGURE 38

TABLE 38

338 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

the widget.Tk_ConfigureWidget processes each option specified inargv according
to the information in the configuration table, converting string values to appropriate inter-
nal forms, allocating resources such as fonts and colors if necessary, and storing the results
into the widget record. For options that aren’t explicitly specified inargv, Tk_Config-
ureWidget checks the option database to see if a value is specified there. For options
that still haven’t been set,Tk_ConfigureWidget uses default values specified in the
table.

When theconfigure widget command is invoked to change options, you call
Tk_ConfigureWidget again with theargc/argv information describing the new
option values.Tk_ConfigureWidget will process the arguments according to the
table and modify the information in the widget record accordingly. When theconfig-
ure widget command is invoked to read out the current settings of options, you call
Tk_ConfigureInfo. It generates a Tcl result describing one or all of the widget’s

Table 38.1.A summary ofTk_ConfigureWidget and related procedures and macros.

int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char *argv[], char *widgRec,
int flags)

Processes a set of arguments from a Tcl command (argc andargv) using a
table of allowable configuration options (specs) and sets the appropriate
fiels of a widget record (widgRec). Tkwin is the widget’s window. Nor-
mally returnsTCL_OK; if an error occurs, returnsTCL_ERROR and leaves
an error message ininterp->result. Flags is normally 0 orTK_CON-
FIG_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char * argvName, flags)

Finds the configuration option inspecs whose command-line name is
argvName, locates the value of that option inwidgRec, and generates in
interp->result a list describing that configuration option. If
argvName isNULL, generates a list of lists describing all of the options in
specs. Normally returnsTCL_OK; if an error occurs, returnsTCL_ERROR
and leaves an error message ininterp->result. Flags is normally 0
(see the reference documentation for other possibilities).

Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags)

Frees up any resources inwidgRec that are used byspecs. Display
must be the widget’s display. Flags is normally 0 but can be used to select
particular entries inspecs (see reference documentation for details).

int Tk_Offset(type, field)
This is a macro that returns the offset of a field namedfield within a struc-
ture whose type istype. Used when creating configuration tables.

38.1 Tk_ConfigureWidget 339

DRAFT (7/10/93): Distribution Restricted

options in exactly the right form, so all you have to do is return this result from the widget
command procedure.

Finally, when a widget is deleted you invokeTcl_FreeOptions. Tcl_FreeOp-
tions scans through the table to find options for which resources have been allocated,
such as fonts and colors. For each such option it uses the information in the widget record
to free up the resource.

38.1.1 Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is
an array of records, each with the following structure:

typedef struct {
int type;
char *argvName;
char *dbName;
char *dbClass;
char *defValue;
int offset;
int specFlags;
Tk_CustomOption *customPtr;

} Tk_ConfigSpec;

Thetype field specifies the internal form into which the option’s string value should be
converted. For example,TK_CONFIG_INT means the option’s value should be converted
to an integer andTK_CONFIG_COLOR means that the option’s value should be converted
to a pointer to anXColor structure. ForTK_CONFIG_INT the option’s value must have
the syntax of a decimal, hexadecimal, or octal integer and forTK_CONFIG_COLOR the
option’s value must have one of the forms for colors described in Section XXX. For
TK_CONFIG_COLOR Tk will allocate anXColor structure, which must later be freed
(e.g. by callingTk_FreeOptions). More than 20 different option types are defined by
Tk; see the reference documentation for details on each of the supported types.

ArgvName is the option’s name as specified on command lines, e.g.
“-background” or “-font”. ThedbName anddbClass fields give the option’s
name and class in the option database. ThedefValue field gives a default value to use
for the option if it isn’t specified on the command line and there isn’t a value for it in the
option database;NULL means there is no default for the option.

Theoffset field tells where in the widget record to store the converted value of the
option. It is specified as a byte displacement from the beginning of the record. You should
use theTk_Offset macro to generate values for this field. For example,

Tk_Offset(Square, relief)

produces an appropriate offset for therelief field of a record whose type isSquare.
ThespecFlags field contains an OR-ed combination of flag bits that provide addi-

tional control over the handling of the option. A few of the flags will be discussed below;
see the reference documentation for a complete listing. Finally, thecustomPtr field pro-

340 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

vides additional information for application-defined options. It’s only used when the type
isTK_CONFIG_CUSTOM and should beNULL in other cases. See the reference documen-
tation for details on defining custom option types.

Here is the option table for square widgets:

Tk_ConfigSpec configSpecs[] = {
{TK_CONFIG_BORDER, "-background", "background",

"Background",
"#cdb79e", Tk_Offset(Square, bgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
"BorderWidth", "1m", Tk_Offset(Square, borderWidth),
0, (Tk_CustomOption *) NULL},

TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFIG_COLOR_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFIG_MONO_ONLY, (Tk_CustomOption *) NULL},

{TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
"raised", Tk_Offset(Square, relief), 0,
(Tk_CustomOption *) NULL},

{TK_CONFIG_END, (char *) NULL, (char *) NULL, ,
(char *) NULL, (char *) NULL, 0, 0,
(Tk_CustomOption *) NULL}

};

This table illustrates three additional features ofTk_ConfigSpecs structures. First,
there are two entries each for the-background and-foreground options. The first
entry for each option has theTK_CONFIG_COLOR_ONLY flag set, which causes Tk to
use that option if the display is a color display and to ignore it if the display is mono-
chrome. The second entry specifies theTK_CONFIG_MONO_ONLY flag so it is only used
for monochrome displays. This feature allows different default values to be specified for
color and mono displays (the current color model for the window determines whether the
it considered to be color or monochrome; see Section XXX). Second, the options-bd, -
bg, and-fg have typeTK_CONFIG_SYNONYM. This means that each of these options is
a synonym for some other option; thedbName field identifies the other option and the
other fields are ignored. For example, if the -bd option is specified with the above table,
Tk will actually use the table entry for the-borderwidth option. Third, the last entry

38.1 Tk_ConfigureWidget 341

DRAFT (7/10/93): Distribution Restricted

in the table must have typeTK_CONFIG_END; Tk depends on this to locate the end of the
table.

38.1.2 Invoking Tk_ConfigureW idget

Suppose thatTk_ConfigureWidget is invoked as follows:

Tcl_Interp *interp;
Tk_Window tkwin;
char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
int code;
...
code = Tk_ConfigureWidget(interp, tkwin, configSpecs,

4, argv, (char *) squarePtr, 0);

A call much like this will occur if a square widget is created with the Tcl command

square .s -relief sunken -bg blue

The-relief option will be processed according to typeTK_CONFIG_RELIEF, which
dictates that the option’s value must be a valid relief, such as “raised” or “sunken”. In
this case the value specified issunken; Tk_ConfigureWidget converts this string
value to the integer valueTK_RELIEF_SUNKEN and stores that value in
squarePtr->relief. The-bg option will be processed according to theconfig-
Specs entry for-background, which has typeTK_CONFIG_BORDER. This type
requires that the option’s value be a valid color name; Tk creates a data structure suitable
for drawing graphics in that color intkwin, and it computes additional colors for draw-
ing light and dark shadows to produce 3-dimensional effects. All of this information is
stored in the new structure and a token for that structure is stored in thebgBorder field
of squarePtr. In Chapter 40 you’ll see how this token is used to draw the widget.

Since the-borderwidth and-foreground options weren’t specified inargv,
Tk_ConfigureWidget looks them up in the option database using the information for
those options inconfigSpecs. If it finds values in the option database then it will use
them in the same way as if they had been supplied inargv.

If an option isn’t specified in the option database thenTk_ConfigureWidget uses
the default value specified in its table entry. For example, for-borderwidth it will use
the default value “1m”. Since the option has typeTK_CONFIG_PIXELS, this string must
specify a screen distance in one of the forms described in Section XXX. “1m” specifies a
distance of one millimeter; Tk converts this to the corresponding number of pixels and
stores the result as an integer insquarePtr->borderWidth. If the default value for
an option isNULL thenTk_ConfigureWidget does nothing at all if there is no value
in eitherargv or the option database; the value in the widget record will retain whatever
value it had whenTk_ConfigureWidget is invoked.

Note: If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widget record before invokingTk_ConfigureWidget. If

342 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

there is a default value then you need not initialize the field in the widget record since
Tk_ConfigureWidget will always store a proper value there.

38.1.3 Errors

Tk_ConfigureWidget normally returnsTCL_OK. If an error occurs then it returns
TCL_ERROR and leaves an error message ininterp->result. The most common
form of error is a value that doesn’t make sense for the option type, such as “abc” for the
-bd option.Tk_ConfigureWidget returns as soon as it encounters an error, which
means that some of the fields of the widget record may not have been set yet; these fields
will be left in an initialized state (such asNULL for pointers,0 for integers,None for X
resources, etc.).

38.1.4 Reconfiguring

Tk_ConfigureWidget gets invoked not only when a widget is created but also during
theconfigure widget command. When reconfiguring you probably won’t want to con-
sider the option database or default values. You’ll want to process only the options that are
specified explicitly inargv, leaving all the unspecified options with their previous values.
To accomplish this, specifyTK_CONFIG_ARGV_ONLY as the last argument toTk_Con-
figureWidget:

code = Tk_ConfigureWidget(interp, tkwin, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFIG_ARGV_ONLY);

38.1.5 Tk_ConfigureInfo

If a configure widget command is invoked with a single argument, or with no argu-
ments, then it returns configuration information. For example, if.s is a square widget
then

.s configure -background

should return a list of information about the-background option and

.s configure

should return a list of lists describing all the options, as described in Section XXX.
Tk_ConfigureInfo does all the work of generating this information in the proper for-
mat. For the square widget it might be invoked as follows:

code = Tk_ConfigureInfo(interp, tkwin, configSpecs,
(char *) squarePtr, argv[2], 0);

Argv[2] specifies the name of a particular option (e.g.-background in the first
example above). If information is to be returned about all options, as in the second exam-
ple above, thenNULL should be specified as the option name.Tk_ConfigureInfo sets
interp->result to hold the proper value and returnsTCL_OK. If an error occurs

38.2 Resource caches 343

DRAFT (7/10/93): Distribution Restricted

(because a bad option name was specified, for example) thenTk_ConfigureInfo
stores an error message ininterp->result and returnsTCL_ERROR. In either case,
the widget command procedure can leaveinterp->result as it is and returncode as
its completion code.

38.1.6 Tk_FreeOptions

The library procedureTk_FreeOptions is usually invoked after a widget is deleted in
order to clean up its widget record. For some option types, such asTK_CONFIG_BOR-
DER, Tk_ConfigureWidget allocates resources which must eventually be freed.
Tk_FreeOptions takes care of this:

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec,
Display *display, int flags);

Specs andwidgRec should be the same as in calls to Tk_ConfigureWidget.Display
identifies the X display containing the widget (it’s needed for freeing certain options) and
flags should normally be 0 (see the reference documentation for other possibilities).
Tk_FreeOptions will scanspecs looking for entries such asTK_CONFIG_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure
a resource is actually allocated (for example, if the value of a string resource isNULL it
means that no memory is allocated). If there is a resource allocated thenTk_FreeOp-
tions passes the value from the widget record to an appropriate procedure to free up the
resource and resets the value in the widget record to a state such asNULL to indicate that it
has been freed.

38.1.7 Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for
any situation where textual information must be converted to an internal form and stored
in fields of a structure, particularly if the information is specified in the same form as for
widget options, e.g.

-background blue -width 1m

Tk uses configuration tables internally for configuring menu entries, for configuring can-
vas items, and for configuring display attributes of tags in text widgets.

38.2 Resource caches

The X window system provides a number of different resources for applications to use.
Windows are one example of a resource; other examples are graphics contexts, fonts, pix-
maps, colors, and cursors. An application must allocate resources before using them and
free them when they’re no longer needed. X was designed to make resource allocation and

344 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

deallocation as cheap as possible, but it is still expensive in many situations because it
requires communication with the X server (for example, font allocation requires commu-
nication with the server to make sure the font exists). If an application uses the same
resource in several different places (e.g. the same font in many different windows) it is
wasteful to allocate separate resources for each use: this wastes time communicating with
the server and it wastes space in the X server to keep track of the copies of the resource.

Tk provides a collection ofresource caches in order to reduce the costs of resource
management. When your application needs a particular resource you shouldn’t call Xlib to
allocate it; call the corresponding Tk procedure instead. Tk keeps track of all the resources
used by the application and allows them to be shared. If you use the same font in many dif-
ferent widgets, Tk will call X to allocate a font for the first widget, but it will re-use this
font for all the other widgets. When the resource is no longer needed anywhere in the
application (e.g. all the widgets using the font have been destroyed) then Tk will invoke
the Xlib procedure to free up the resource. This approach saves time as well as memory in
the X server.

If you allocate a resource through Tk you must treat it as read-only since it may be
shared. For example, if you allocate a graphics context withTk_GetGC you must not
change the background color of the graphics context, since this would affect the other uses
of the graphics context. If you need to modify a resource after creating it then you should
not use Tk’s resource caches; call Xlib directly to allocate the resource so that you can
have a private copy.

Most of the resources for a widget are allocated automatically byTk_Configure-
Widget, andTk_ConfigureWidget uses the Tk resource caches. The following sub-
sections describe how to use the Tk resource caches directly, without going through
Tk_ConfigureWidget.

38.2.1 Graphics contexts

Graphics contexts are the resource that you are most likely to allocate directly. They are
needed whenever you draw information on the screen andTk_ConfigureWidget
does not provide facilities for allocating them. Thus most widgets will need to allocate a
few graphics contexts in their configure procedures. The procedureTk_GetGC allocates a
graphics context and is similar to the Xlib procedureXCreateGC:

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask,
XGCValues *valuePtr)

Thetkwin argument specifies the window in which the graphics context will be used.
ValueMask andValuePtr specify the fields of the graphics context.ValueMask is
an OR-ed combination of bits such asGCForeground orGCFont that indicate which
fields ofvaluePtr are significant.ValuePtr specifies values of the selected fields.
Tk_GetGC returns the X resource identifier for a graphics context that matchesvalue-
Mask andvaluePtr. The graphics context will have default values for all of the unspec-
ified fields.

38.2 Resource caches 345

DRAFT (7/10/93): Distribution Restricted

When you’re finished with a graphics context you must free it by calling
Tk_FreeGC:

Tk_FreeGC(Display *display, GC gc)

Thedisplay argument indicates the display for which the graphics context was allo-
cated and thegc argument identifies the graphics context (gc must have been the return
value from some previous call toTk_GetGC). There must be exactly one call to
Tk_FreeGC for each call toTk_GetGC.

38.2.2 Other resources

Although resources other than graphics contexts are normally allocated and deallocated
automatically byTk_ConfigureWidget andTk_FreeOptions, you can also allo-
cate them explicitly using Tk library procedures. For each resource there are three proce-
dures. The first procedure (such asTk_GetColor) takes a textual description of the
resource in the same way it might be specified as a configuration option and returns a suit-
able resource or an error. The second procedure (such asTk_FreeColor) takes a
resource allocated by the first procedure and frees it. The third procedure takes a resource
and returns the textual description that was used to allocate it. The following resources are
supported in this way:

Bitmaps: the proceduresTk_GetBitmap, Tk_FreeBitmap, andTk_NameOf-
Bitmap managePixmap resources with depth one. You can also invokeTk_De-
fineBitmap to create new internally-defined bitmaps, andTk_SizeOfBitmap
returns the dimensions of a bitmap.

Colors : the proceduresTk_GetColor, Tk_FreeColor, andTk_NameOfColor
manageXColor structures. You can also invokeTk_GetColorByValue to specify
a color with integer intensities rather than a string.

Cursors: the proceduresTk_GetCursor, Tk_FreeCursor, and
Tk_NameOfCursor manageCursor resources. You can also invokeTk_GetCur-
sorFromData to define a cursor based on binary data in the application.

Fonts: the proceduresTk_GetFontStruct, Tk_NameOfFontStruct, and
Tk_FreeFontStruct manageXFontStruct structures.

3-D borders: the proceduresTk_Get3DBorder, Tk_Free3DBorder, and
Tk_NameOf3DBorder manageTk_3DBorder resources, which are used to draw
objects with beveled edges that produce 3-D effects. Associated with these procedures
are other procedures such asTk_Draw3DRectangle that draw objects on the screen
(see Section 40.3). In addition you can invokeTk_3DBorderColor to retrieve the
XColor structure for the border’s base color.

346 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

38.3 Tk_Uids

When invoking procedures likeTk_GetColor you pass in a textual description of the
resource to allocate, such as “red” for a color. However, this textual description is not a
normal C string but rather aunique identifier, which is represented with the typeTk_Uid:

typedef char *Tk_Uid;

A Tk_Uid is like an atom in Lisp. It is actually a pointer to a character array, just like a
normal C string, and aTk_Uid can be used anywhere that a string can be used. However,
Tk_Uid’s have the property that any twoTk_Uid’s with the same string value also have
the same pointer value: ifa andb areTk_Uid’s and

(strcmp(a,b) == 0)

then

(a == b)

Tk usesTk_Uid’s to specify resources because they permit fast comparisons for equality.
If you useTk_ConfigureWidget to allocate resources then you won’t have to

worry aboutTk_Uid’s (Tk automatically translates strings from the configuration table
intoTk_Uid’s). But if you call procedures likeTk_GetColor directly then you’ll need
to useTk_GetUid to turn strings into unique identifiers:

Tk_Uid Tk_GetUid(char *string)

Given a string argument,Tk_GetUid returns the correspondingTk_Uid. It just keeps a
hash table of all unique identifiers that have been used so far and returns a pointer to the
key stored in the hash table.

Note: If you pass strings directly to procedures likeTk_GetColor without converting them to
unique identifiers then you will get unpredictable results. One common symptom is that the
application uses the same resource over and over even though you think you’ve specified
different values for each use. Typically what happens is that the same string buffer was
used to store all of the different values. Tk just compares the string address rather than its
contents, so the values appear to Tk to be the same.

38.4 Other translators

Tk provides several other library procedures that translate from strings in various forms to
internal representations. These procedures are similar to the resource managers in Section
38.2 except that the internal forms are not resources that require freeing, so typically there
is just a “get” procedure and a “name of” procedure with no “free” procedure. Below is a
quick summary of the availabile translators (see the reference documentation for details):

Anchors: Tk_GetAnchor andTk_NameOfAnchor translate between strings con-
taining an anchor positions such as “center” or “ne” and integers with values
defined by symbols such asTK_ANCHOR_CENTER orTK_ANCHOR_NE.

38.5 Changing window attributes 347

DRAFT (7/10/93): Distribution Restricted

Cap styles: Tk_GetCapStyle andTk_NameOfCapStyle translate betwen
strings containing X cap styles (“butt”, “projecting”, or “round”) and integers
with values defined by the X symbolsCapButt, CapProjecting, andCapRound.

Join styles: Tk_JoinStyle andTk_NameOfJoinStyle translate between strings
containing X join styles (“bevel”, “miter”, or “round”) and integers with values
defined by the X symbolsJoinBevel, JoinMiter, andJoinRound.

Justify styles: Tk_GetJustify andTk_NameOfJustify translate between
strings containing styles of justification (“left”, “right”, “center”, or “fill”)
and integers with values defined by the symbolsTK_JUSTIFY_LEFT, TK_JUSTI-
FY_RIGHT, TK_JUSTIFY_CENTER, andTK_JUSTIFY_FILL.

Reliefs: Tk_GetRelief andTk_NameOfRelief translate between strings con-
taining relief names (“raised”, “sunken”, “flat”, “groove”, or “ridge”) and
integers with values defined by the symbolsTK_RELIEF_RAISED, TK_RELIEF_-
SUNKEN, etc.

Screen distances: Tk_GetPixels andTk_GetScreenMM process strings that con-
tain screen distances in any of the forms described in Section XXX, such as “1.5m” or
“2”. Tk_GetPixels returns an integer result in pixel units, andTk_GetScreenMM
returns a real result whose units are millimeters.

Window names: Tk_NameToWindow translates from a string containing a window
path name such as “.dlg.quit” to theTk_Window token for the corresponding
window.

X atoms: Tk_InternAtom andTk_GetAtomName translate between strings con-
taining the names of X atoms (e.g. “RESOURCE_MANAGER”) and XAtom tokens.
Tk keeps a cache of atom names to avoid communication with the X server.

38.5 Changing window attributes

Tk provides a collection of procedures for modifying a window’s attributes (e.g. back-
ground color or cursor) and configuration (e.g. position or size). These procedures are
summarized in Table 38.2. The procedures have the same arguments as the Xlib proce-
dures with corresponding names. They perform the same functions as the Xlib procedures
except that they also retain a local copy of the new information so that it can be returned
by the macros described in Section 37.5. For example,Tk_ResizeWindow is similar to
the Xlib procedureXResizeWindow in that it modifies the dimensions of a window.
However, it also remembers the new dimensions so they can be accessed with the
Tk_Width andTk_Height macros.

Only a few of the procedures in Table 38.2, such asTk_SetWindowBackground,
are normally invoked by widgets. Widgets should definitelynot invoke procedures like

348 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

Tk_MoveWindow orTk_ResizeWindow: only geometry managers should change the
size or location of a window.

38.6 The square configure procedure

Figure 38.1 contains the code for the square widget’s configure procedure. Itsargv argu-
ment contains pairs of strings that specify configuration options.Most of the work is done
by Tk_ConfigureWidget. OnceTk_ConfigureWidget returns,Configur-

Table 38.2.Tk procedures for modifying attributes and window configuration information.
Tk_ChangeWindowAttributes andTk_ConfigureWindow allow any or all of the
attributes or configuration to be set at once (valueMask selects which values should be set); the
other procedures set selected fields individually.

Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned int value-
Mask,

XSetWindowAttributes *attsPtr)

Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_DefineCursor(Tk_Window tkwin, Cursor cursor)

Tk_MoveWindow(Tk_Window tkwin, int x, int y)

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Tk_ResizeWindow(Tk_Window tkwin, unsgined int width,
unsigned int height)

Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)

Tk_UndefineCursor(Tk_Window tkwin)

38.7 The square widget command procedure 349

DRAFT (7/10/93): Distribution Restricted

eSquare extracts the color associated with the-background option and calls
Tk_SetWindowBackground to use it as the background color for the widget’s win-
dow. Then it allocates a graphics context that will be used during redisplay to copy bits
from an off-screen pixmap into the window (unless some previous call to the procedure
has already allocated the graphics context). NextConfigureSquare callsTk_Geom-
etryRequest andTk_SetInternalBorderWidth to provide information to its
geometry manager (this will be discussed in Chapter 43). Finally, it arranges for the wid-
get to be redisplayed; this will be discussed in Chapter 40.

38.7 The square widget command procedure

Figures 38.2 and 38.3 contain the C code forSquareWidgetCommand, which
implements widget commands for square widgets. The main portion of the procedure con-
sists of a series ofif statements that compareargv[1] successively to “configure”,
“position”, and “size”, which are the three widget commands defined for squares. If

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {

if (Tk_ConfigureWidget(interp, squarePtr->tkwin, configSpecs,
argc, argv, (char *) squarePtr, flags) != TCL_OK) {

return TCL_ERROR;
}
Tk_SetWindowBackground(squarePtr->tkwin,

Tk_3DBorderColor(squarePtr->bgBorder));
if (squarePtr->gc == None) {

XGCValues gcValues;
gcValues.function = GXcopy;
gcValues.graphics_exposures = False;
squarePtr->gc = Tk_GetGC(squarePtr->tkwin,

GCFunction|GCGraphicsExposures, &gcValues);
}
Tk_GeometryRequest(squarePtr->tkwin, 200, 150);
Tk_SetInternalBorder(squarePtr->tkwin,

squarePtr->borderWidth);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
return TCL_OK;

}

Figure 38.1.The configure procedure for square widgets. It is invoked by the creation procedure
and by the widget command procedure to set and modify configuration options.

350 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

int SquareWidgetCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {

Square *squarePtr = (Square *) clientData;
int result = TCL_OK;

if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " option ?arg arg ...?\"",
(char *) NULL);

return TCL_ERROR;
}

Tk_Preserve((ClientData) squarePtr);
if (strcmp(argv[1], "configure") == 0) {

if (argc == 2) {
result = Tk_ConfigureInfo(interp, squarePtr->tkwin,

(char *) squarePtr, (char *) NULL, 0);
} else if (argc == 3) {

result = Tk_ConfigureInfo(interp, squarePtr->tkwin,
(char *) squarePtr, argv[2], 0);

} else {
result = ConfigureSquare(interp, squarePtr,

argc-2, argv+2, TK_CONFIG_ARGV_ONLY);
}

} else if (strcmp(argv[1], "position") == 0) {
if ((argc != 2) && (argc != 4)) {

Tcl_AppendResult(interp,"wrong # args: should be \"",
argv[0], " position ?x y?\"", (char *) NULL);

goto error;
}
if (argc == 4) {

if ((Tk_GetPixels(interp, squarePtr->tkwin,
argv[2], &squarePtr->x) != TCL_OK) ||
(Tk_GetPixels(interp, squarePtr->tkwin,
argv[3], &squarePtr->y) != TCL_OK)) {

goto error;
}
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d %d", squarePtr->x,

squarePtr->y);
} else if (strcmp(argv[1], "size") == 0) {

Figure 38.2.The widget command procedure for square widgets. Continued in Figure 38.3.

38.7 The square widget command procedure 351

DRAFT (7/10/93): Distribution Restricted

argv[1] matches one of these strings then the corresponding code is executed; other-
wise an error is generated.

Theconfigure widget command is handled in one three ways, depending on how
many additional arguments it receives. If at most one additional argument is provided then
SquareWidgetCmd callsTk_ConfigureInfo to create descriptive information for
one or all of the widget’s configuration options. If two or more additional arguments are

if ((argc != 2) && (argc != 3)) {
Tcl_AppendResult(interp, "wrong # args: should be \"",

argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
if (argc == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwin, argv[2],

&i) != TCL_OK) {
goto error;

}
if ((i <= 0) || (i > 100)) {

Tcl_AppendResult(interp, "bad size \"", argv[2],
"\"", (char *) NULL);

goto error;
}
squarePtr->size = i;
KeepInWindow(squarePtr);

}
sprintf(interp->result, "%d", squarePtr->size);

} else {
Tcl_AppendResult(interp, "bad option \"", argv[1],

"\": must be configure, position, or size",
(char *) NULL);

goto error;
}
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
Tk_Release((ClientData) squarePtr);
return result;

error:
Tk_Release((ClientData) squarePtr);
return TCL_ERROR;

}

Figure 38.3.The widget command procedure for square widgets, continued from Figure 38.2.

352 Configuring Widgets

DRAFT (7/10/93): Distribution Restricted

provided thenSquareWidgetCmd passes the additional arguments toConfigur-
eSquare for processing;SquareWidgetCmd specifies the
TK_CONFIG_ARGV_ONLY flag, whichConfigureSquare passes on toTk_Con-
figureWidget so that options not specified explicitly byargv are left as-is.

Theposition andsize widget commands change the geometry of the square dis-
played in the widget, and they have similar implementations. If new values for the geome-
try are specified then each command callsTk_GetPixels to convert the argument(s) to
pixel distances. Thesize widget command also checks to make sure that the new size is
within a particular range of values. Then both commands invokeKeepInWindow, which
adjusts the position of the square if necessary to ensure that it is fully visible in the wid-
get’s window (see Figure 38.4). Finally, the commands print the current values into
interp->result to return them as result.

SquareWidgetCmd invokes the proceduresTk_Preserve andTk_Release as
a way of preventing the widget record from being destroyed while the widget command is
executing. Chapter 41 will discuss these procedures in more detail. The square widget is
so simple that the calls aren’t actually needed, but virtually all real widgets do need them
so I put them inSquareWidgetCmd too.

void KeepInWindow(Square *squarePtr) {
int i, bd;
bd = 0;
if (squarePtr->relief != TK_RELIEF_FLAT) {

bd = squarePtr->borderWidth;
}
i = (Tk_Width(squarePtr->tkwin) - bd)

- (squarePtr->x + squarePtr->size);
if (i < 0) {

squarePtr->x += i;
}
i = (Tk_Height(squarePtr->tkwin) - bd)

- (squarePtr->y + squarePtr->size);
if (i < 0) {

squarePtr->y += i;
}
if (squarePtr->x < bd) {

squarePtr->x = bd;
}
if (squarePtr->y < bd) {

squarePtr->y = bd;
}

}

Figure 38.4.TheKeepInWindow procedure adjusts the location of the square to make sure that it
is visible in the widget’s window.

353

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 39
Events

This chapter describes Tk’s library procedures for event handling. The code you’ll write
for event handling divides into three parts. The first part consists of code that creates event
handlers: it informs Tk that certain callback procedures should be invoked when particular
events occur. The second part consists of the callbacks themselves. The third part consists
of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just
become readable), and timer events. Tk also allows you to createidle callbacks, which
cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are
used to defer redisplays and other computations until all pending events have been pro-
cessed. Tk’s procedures for event handling are summarized in Table 39.1.

If you are not already familiar with X events, I recommend reading about them in
your favorite Xlib documentation before reading this chapter.

39.1 X events

The X window server generates a number of different events to report interesting things
that occur in the window system, such as mouse presses or changes in a window’s size.
Chapter XXX showed how you can use Tk’sbind command to write event handlers as
Tcl scripts. This section describes how to write event handlers in C. Typically you’ll only
use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-
played.

FIGURE 39

TABLE 39

354 Events

DRAFT (7/10/93): Distribution Restricted

Table 39.1.A summary of the Tk library procedures for event handling.

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Arranges forproc to be invoked whenever any of the events selected by
mask occurs fortkwin.

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

Deletes the event handler that matchesmask, proc, andclientData, if
such a handler exists.

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)

Arranges forproc to be invoked whenver one of the conditions indicated by
mask occurs for the file whose descriptor number isfd.

void Tk_DeleteFileHandler(int fd)
Deletes the file handler forfd, if one exists.

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData)

Arranges forproc to be invoked aftermilliseconds have elapsed.
Returns a token that can be used to cancel the callback.

void Tk_DeleteTimerHandler(Tk_TimerToken token)
Cancels the timer callback indicated bytoken, if it hasn’t yet triggered.

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData)
Arranges forproc to be invoked when Tk has nothing else to do.

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData clientData)
Deletes any existing idle callbacks foridleProc andclientData.

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Arranges forproc to be invoked whenever any X event is received by this
process.

void Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData)

Deletes the generic handler given byproc andclientData, if such a
handler exists.

void Tk_MainLoop(void)
Processes events until there are no more windows left in this process.

int Tk_DoOneEvent(int flags)
Processes a single event of any sort and then returns.Flags is normally 0
but may be used to restrict the events that will be processed or to return
immediately if there are no pending events.

39.1 X events 355

DRAFT (7/10/93): Distribution Restricted

ConfigureNotify: these events occur when the window’s size or position changes
so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-
tioned).

FocusIn andFocusOut: these events notify the widget that it has gotten or lost the
input focus, so it can turn on or off its insertion cursor.

DestroyNotify: these events notify the widget that its window has been destroyed,
so it should free up the widget record and any associated resources.

The responses to these events are all relatively obvious and it is unlikely that a user or
application developer would want to deal with the events so it makes sense to hard-code
the responses in C. For most other events, such as key presses and mouse actions, it’s bet-
ter to define the handlers in Tcl with thebind command. As a widget writer you can cre-
ate class bindings to give the widget its default behavior, then users can modify the class
bindings or augment them with additional widget-specific bindings. By using Tcl as much
as possible you’ll make your widgets more flexible.

The procedureTk_CreateEventHandler is used by widgets to register interest
in X events:

void Tk_CreateEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

Thetkwin argument identifies a particular window andmask is an OR’ed combination
of bits likeKeyPressMask andStructureNotifyMask that select the events of
interest (refer to Xlib documentation for details on the mask values that are available).
When one of the requested events occurs fortkwin Tk will invokeproc to handle the
event.Proc must match the following prototype:

typedef void Tk_EventProc(ClientData clientData, XEvent
*eventPtr);

Its first argument will be the same as theclientData value that was passed to
Tk_CreateEventHandler and the second argument will be a pointer to a structure
containing information about the event (see your Xlib documentation for details on the
contents of anXEvent structure). There can exist any number of event handlers for a
given window and mask but there can be only one event handler with a particulartkwin,
mask, proc, andclientData. If a particular event matches thetkwin andmask for
more than one handler then all of the matching handlers are invoked, in the order in which
they were created.

For example, the C code for the square widget deals withExpose, ConfigureNo-
tify, andDestroyNotify events. To process these events, the following code is
present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_CreateEventHandler(squarePtr->tkwin,
ExposureMask|StructureNotifyMask,
SquareEventProc, (ClientData) squarePtr);

356 Events

DRAFT (7/10/93): Distribution Restricted

TheExposureMask bit selectsExpose events andStructureNotifyMask selects
bothConfigureNotify andDestroyNotify events, plus several other types of
events. The address of the widget’s record is used as theClientData for the callback,
so it will be passed toSquareEventProc as its first argument.

Figure 39.1 contains the code forSquareEventProc, the event procedure for
square widgets. Whenever an event occurs that matchesExposureMask orStruc-
tureNotifyMask Tk will invokeSquareEventProc. SquareEventProc casts
its clientData argument back into aSquare * pointer, then checks to see what kind
of event occurred. ForExpose eventsSquareEventProc arranges for the widget to
be redisplayed. ForConfigureNotify events,SquareEventProc callsKeepIn-
Window to make sure that the square is still visible in the window (see Figure 38.4 on
page 352), thenSquareEventProc arranges for the widget to be redrawn. For
DestroyNotify eventsSquareEventProc starts the process of destroying the wid-
get and freeing its widget record; this process will be discussed in more detail in Chapter
41.

void SquareEventProc(ClientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {

if ((eventPtr->xexpose.count == 0)
&& !squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == ConfigureNotify) {

KeepInWindow(squarePtr);
if (!squarePtr->updatePending) {

Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}
} else if (eventPtr->type == DestroyNotify) {

Tcl_DeleteCommand(squarePtr->interp,
Tk_PathName(squarePtr->tkwin));

squarePtr->tkwin = NULL;
if (squarePtr->flags & REDRAW_PENDING) {

Tk_CancelIdleCall(DisplaySquare,
(ClientData) squarePtr);

}
Tk_EventuallyFree((ClientData) squarePtr, DestroySquare);

}
}

Figure 39.1.The event procedure for square widgets.

39.2 File events 357

DRAFT (7/10/93): Distribution Restricted

If you should need to cancel an existing X event handler you can invokeTk_Dele-
teEventHandler with the same arguments that you passed toTk_Cre-
ateEventHandler when you created the handler:

void Tk_DeleteEventHandler(Tk_Window tkwin, unsigned long
mask,

Tk_EventProc *proc, ClientData clientData);

This deletes the handler corresponding totkwin, mask, proc, andclientData so
that its callback will not be invoked anymore. If no such handler exists then the procedure
does nothing. Tk automatically deletes all of the event handlers for a window when the
window is destroyed, so most widgets never need to callTk_DeleteEventHandler.

39.2 File events

Event-driven programs like Tk applications should not block for long periods of time
while executing any one operation, since this prevents other events from being serviced.
For example, suppose that a Tk application attempts to read from its standard input at a
time when no input is available. The application will block until input appears. During this
time the process will be suspended by the operating system so it cannot service X events.
This means, for example, that the application will not be able to respond to mouse actions
nor will it be able to redraw itself. Such behavior is likely to be annoying to the user, since
he or she expects to be able to interact with the application at any time.

File handlers provide an event-driven mechanism for reading and writing files that
may have long I/O delays. The procedureTk_CreateFileHandler creates a new file
handler:

void Tk_CreateFileHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);

Thefd argument gives the number of a POSIX file descriptor (e.g. 0 for standard input, 1
for standard output, and so on).Mask indicates whenproc should be invoked. It is an
OR’ed combination of the following bits:

TK_READABLE means that Tk should invokeproc whenever there is data waiting to
be read onfd;

TK_WRITABLE means that Tk should invokeproc wheneverfd is capable of accept-
ing more output data;

TK_EXCEPTION means that Tk should invokeproc whenever an exceptional condi-
tion is present forfd.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(ClientData clientData,
int mask);

358 Events

DRAFT (7/10/93): Distribution Restricted

TheclientData argument will be the same as theclientData argument to
Tk_CreateFileHandler andmask will contain a combination of the bits
TK_READABLE, TK_WRITABLE, andTK_EXCEPTION to indicate the state of the file at
the time of the callback. There can exist only one file handler for a given file at a time; if
you callTk_CreateFileHandler at a time when there exists a handler forfd then
the new handler replaces the old one.

Note: You can temporarily disable a file handler by setting its mask to 0. You can reset the mask
later when you want to re-enable the handler.

To delete a file handler, callTk_DeleteFileHandler with the samefd argu-
ment that was used to create the handler:

void Tk_DeleteFileHandler(int fd);

This removes the handler forfd so that its callback will not be invoked again.
With file handlers you can do event-driven file I/O. Rather than opening a file, reading

it from start to finish, and then closing the file, you open the file, create a file handler for it,
and then return. When the file is readable the callback will be invoked. It issues exactly
one read request for the file, processes the data returned by the read, and then returns.
When the file becomes readable again (perhaps immediately) then the callback will be
invoked again. Eventually, when the entire file has been read, the file will become readable
and the read call will return an end-of-file condition. At this point the file can be closed
and the file handler deleted. With this approach, your application will still be able to
respond to X events even if there are long delays in reading the file.

For example,wish uses a file handler to read commands from its standard input. The
main program forwish creates a file handler for standard input (file descriptor 0) with the
following statement:

...
Tk_CreateFileHandler(0, TK_READABLE, StdinProc, (ClientData)
NULL);
Tcl_DStringInit(&command);
...

In addition to creating the callback, this code initializes a dynamic string that will be used
to buffer lines of input until a complete Tcl command is ready for evaluation. Then the
main program enters the event loop as will be described in Section 39.6. When data
becomes available on standard inputStdinProc will be invoked. Its code is as follows:

void StdinProc(ClientData clientData, int mask) {
int count, code;
char input[1000];
count = read(0, input, 1000);
if (count <= 0) {

... handle errors and end of file ...
}
Tcl_DStringAppend(&command, input, count);
if (Tcl_CmdComplete(Tcl_DStringValue(&command)) {

code = Tcl_Eval(interp,

39.3 Timer events 359

DRAFT (7/10/93): Distribution Restricted

Tcl_DStringValue(&command));
Tcl_DStringFree(&command);
...

}
...

}

After reading from standard input and checking for errors and end-of file,StdinProc
adds the new data to the dynamic string’s current contents. Then it checks to see if the
dynamic string contains a complete Tcl command (it won’t, for example, if a line such as
“foreach i $x {“ has been entered but the body of theforeach loop hasn’t yet
been typed). If the command is complete thenStdinProc evaluates the command and
clears the dynamic string for the next command.

Note: It is usually best to use non-blocking I/O with file handlers, just to be absolutely sure that
I/O operations don’t block. To request non-blocking I/O, specify the flagO_NONBLOCK to
thefcntl POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockets, it’s essential that you use use non-blocking I/O;
otherwise if you supply too much data in awrite system call the output buffers will fill
and the process will be put to sleep.

Note: For ordinary disk files it isn’t necessary to use the event-driven approach described in this
section, since reading and writing these files rarely incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

39.3 Timer events

Timer events trigger callbacks after particular time intervals. For example, widgets use
timer events to display blinking insertion cursors. When the cursor is first displayed in a
widget (e.g. because it just got the input focus) the widget creates a timer callback that will
trigger in a few tenths of a second. When the timer callback is invoked it turns the cursor
off if it was on, or on if it was off, and then reschedules itself by creating a new timer call-
back that will trigger after a few tenths of a second more. This process repeats indefinitely
so that the cursor blinks on and off. When the widget wishes to stop displaying the cursor
altogether (e.g. because it has lost the input focus) it cancels the callback and turns the cur-
sor off.

The procedureTk_CreateTimerHandler creates a timer callback:

Tk_TimerToken Tk_CreateTimerHandler(int milliseconds,
Tk_TimerProc *proc, ClientData clientData);

Themilliseconds argument specifies how many milliseconds should elapse before
the callback is invoked.Tk_CreateTimerHandler returns immediately, and its
return value is a token that can be used to cancel the callback. After the given interval has
elapsed Tk will invokeproc. Proc must match the following prototype:

void Tk_TimerProc(ClientData clientData);

360 Events

DRAFT (7/10/93): Distribution Restricted

Its argument will be the same as theclientData argument passed toTk_Cre-
ateTimerHandler. Proc is only called once, then Tk deletes the callback automati-
cally. If you wantproc to be called over and over at regular intervals thenproc should
reschedule itself by callingTk_CreateTimerHandler each time it is invoked.

Note: There is no guarantee thatproc will be invoked at exactly the specified time. If the
application is busy processing other events when the specified time occurs thenproc
won’t be invoked until the next time the application invokes the event dispatcher, as
described in Section 39.6.

Tk_DeleteTimerHandler cancels a timer callback:

void Tk_DeleteTimerHandler(Tk_TimerToken token);

It takes a single argument, which is a token returned by a previous call toTk_Cre-
ateTimerHandler, and deletes the callback so that it will never be invoked. It is safe
to invokeTk_DeleteTimerHandler even if the callback has already been invoked;
in this case the procedure has no effect.

39.4 Idle callbacks

The procedureTk_DoWhenIdle creates anidle callback:

void Tk_DoWhenIdle(Tk_IdleProc *proc, ClientData clientData);

This arranges forproc to be invoked the next time the application becomes idle. The
application is idle when Tk’s main event-processing procedure,Tk_DoOneEvent, is
called and no X events, file events, or timer events are ready. Normally when this occurs
Tk_DoOneEvent will suspend the process until an event occurs. However, if there exist
idle callbacks then all of them are invoked. Idle callbacks are also invoked when the
update Tcl command is invoked. Theproc for an idle callback must match the follow-
ing prototype:

typedef void Tk_IdleProc(ClientData clientData);

It returns no result and takes a single argument, which will be the same as theclient-
Data argument passed toTk_DoWhenIdle.

Tk_CancelIdleCall deletes an idle callback so that it won’t be invoked after all:

void Tk_CancelIdleCall(Tk_IdleProc *proc, ClientData
clientData);

Tk_CancelIdleCall deletes all of the idle callbacks that matchidleProc and
clientData (there can be more than one). If there are no matching idle callbacks then
the procedure has no effect.

Idle callbacks are used to implement the delayed operations described in Section
XXX. The most common use of idle callbacks in widgets is for redisplay. It is generally a
bad idea to redisplay a widget immediately when its state is modified, since this can result
in multiple redisplays. For example, suppose the following set of Tcl commands is
invoked to change the color, size, and location of a square widget.s:

39.5 Generic event handlers 361

DRAFT (7/10/93): Distribution Restricted

.s configure -foreground purple

.s size 2c

.s position 1.2c 3.1c

Each of these commands modifies the widget in a way that requires it to be redisplayed,
but it would be a bad idea for each command to redraw the widget. This would result in
three redisplays, which are unnecessary and can cause the widget to flash as it steps
through a series of changes. It is much better to wait until all of the commands have been
executed and then redisplay the widget once. Idle callbacks provide a way of knowing
when all of the changes have been made: they won’t be invoked until all available events
have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever
it notices that it needs to be redrawn it invokes the following code:

if (!squarePtr->updatePending) {
Tk_DoWhenIdle(DisplaySquare, (ClientData) squarePtr);
squarePtr->updatePending = 1;

}

This arranges forDisplaySquare to be invoked as an idle handler to redraw the wid-
get. TheupdatePending field of the widget record keeps track of whetherDisplay-
Square has already been scheduled, so that it will only be scheduled once. When
DisplaySquare is finally invoked it resetsupdatePending to zero.

39.5 Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur
for a particular window managed by Tk. Generic event handlers provide access to events
that aren’t associated with a particular window, such asMappingNotify events, and to
events for windows not managed by Tk (such as those in other applications). Generic
event handlers are rarely needed and should be used sparingly.

To create a generic event handler, callTk_CreateGenericHandler:

void Tk_CreateGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

This will arrange forproc to be invoked whenever any X event is received by the appli-
cation.Proc must match the following prototype:

typedef int Tk_GenericProc(ClientData clientData,
XEvent *eventPtr);

Its clientData argument will be the same as theclientData passed toTk_Cre-
ateGenericHandler andeventPtr will be a pointer to the X event. Generic han-
dlers are invoked before normal event handlers, and if there are multiple generic handlers
then they are called in the order in which they were created. Each generic handler returns
an integer result. If the result is non-zero it indicates that the handler has completely pro-

362 Events

DRAFT (7/10/93): Distribution Restricted

cessed the event and no further handlers, either generic or normal, should be invoked for
the event.

The procedureTk_DeleteGenericHandler deletes generic handlers:

Tk_DeleteGenericHandler(Tk_GenericProc *proc,
ClientData clientData);

Any generic handlers that matchproc andclientData are removed, so thatproc
will not be invoked anymore.

Note: Tk_CreateGenericHandler does nothing to ensure that the desired events are
actually sent to the application. For example, if an application wishes to respond to events
for a window in some other application then it must invokeXSelectInput to notify the
X server that it wants to receive the events. Once the events arrive, Tk will dispatch them
to the generic handler. However, an application should never invokeXSelectInput for
a window managed by Tk, since this will interfere with Tk’s event management.

39.6 Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event
handlers and writing callback procedures. The final part of event management is to invoke
the Tk event dispatcher, which waits for events to occur and invokes the appropriate call-
backs. If you don’t invoke the dispatcher then no events will be processed and no call-
backs will be invoked.

Tk provides two procedures for event dispatching:Tk_MainLoop and
Tk_DoOneEvent. Most applications only useTk_MainLoop. It takes no arguments
and returns no result and it is typically invoked once, in the main program after initializa-
tion.Tk_MainLoop calls the Tk event dispatcher repeatedly to process events. When all
available events have been processed it suspends the process until more events occur, and
it repeats this over and over. It returns only when everyTk_Window created by the pro-
cess has been deleted (e.g. after the “destroy .” command has been executed). A typi-
cal main program for a Tk application will create a Tcl interpreter, call
Tk_CreateMainWindow to create a Tk application plus its main window, perform
other application-specific initialization (such as evaluating a Tcl script to create the appli-
cation’s interface), and then callTk_MainLoop. WhenTk_MainLoop returns the main
program exits. Thus Tk provides top-level control over the application’s execution and all
of the application’s useful work is carried out by event handlers invoked viaTk_Main-
Loop.

The second procedure for event dispatching isTk_DoOneEvent, which provides a
lower level interface to the event dispatcher:

int Tk_DoOneEvent(int flags)

Theflags argument is normally 0 (or, equivalently, TK_ALL_EVENTS). In this case
Tk_DoOneEvent processes a single event and then returns 1. If no events are pending

39.6 Invoking the event dispatcher 363

DRAFT (7/10/93): Distribution Restricted

thenTk_DoOneEvent suspends the process until an event arrives, processes that event,
and then returns 1.

For example,Tk_MainLoop is implemented usingTk_DoOneEvent:

void Tk_MainLoop(void) {
while (tk_NumMainWindows > 0) {

Tk_DoOneEvent(0);
}

}

The variabletk_NumMainWindows is maintained by Tk to count the total number of
main windows (i.e. applications) managed by this process.Tk_MainLoop just calls
Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent is also used by commands such astkwait that want to process
events while waiting for something to happen. For example, the “tkwait window”
command processes events until a given window has been deleted, then it returns. Here is
the C code that implements this command:

int done;
...
Tk_CreateEventHandler(tkwin, StructureNotifyMask,
WaitWindowProc,

(ClientData) &done);
done = 0;
while (!done) {

Tk_DoOneEvent(0);
}
...

The variabletkwin identifies the window whose deletion is awaited. The code creates an
event handler that will be invoked when the window is deleted, then invokes
Tk_DoOneEvent over and over until thedone flag is set to indicate thattkwin has
been deleted. The callback for the event handler is as follows:

void WaitWindowProc(ClientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {

*donePtr = 1;
}

}

TheclientData argument is a pointer to the flag variable.WaitWindowProc checks
to make sure the event is aDestroyNotify event (StructureNotifyMask also
selects several other kinds of events, such asConfigureNotify) and if so it sets the
flag variable to one.

Theflags argument toTk_DoOneEvent can be used to restrict the kinds of
events it will consider. If it contains any of the bitsTK_X_EVENTS, TK_FILE_EVENTS,
TK_TIMER_EVENTS, orTK_IDLE_EVENTS, then only the events indicated by the
specified bits will be considered. Furthermore, ifflags includes the bitTK_DONT_-
WAIT, or if no X, file, or timer events are requested, thenTk_DoOneEvent won’t sus-

364 Events

DRAFT (7/10/93): Distribution Restricted

pend the process; if no event is ready to be processed then it will return immediately with
a 0 result to indicate that it had nothing to do. For example, the “update idletasks”
command is implemented with the following code, which uses theTK_IDLE_EVENTS
flag:

while (Tk_DoOneEvent(TK_IDLE_EVENTS) != 0) {
/* empty loop body */

}

365

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 40
Displaying Widgets

Tk provides relatively little support for actually drawing things on the screen. For the most
part you just use Xlib functions likeXDrawLine andXDrawString. The only proce-
dures provided by Tk are those summarized in Table 40.1, which create three-dimensional
effects by drawing light and dark shadows around objects (they will be discussed more in
Section 40.3). This chapter consists mostly of a discussion of techniques for delaying
redisplays and for using pixmaps to double-buffer redisplays. These techniques reduce
redisplay overheads and help produce smooth visual effects with mimimum flashing.

40.1 Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-
ing the widget every time its state is modified, you should useTk_DoWhenIdle to
schedule the widget’s display procedure for execution later, when the application has fin-
ished processing all available events. This allows any other pending changes to the widget
to be completed before it’s redrawn.

Delayed redisplay requires you to keep track of what to redraw. For simple widgets
such as the square widget or buttons or labels or entries, I recommend the simple approach
of redrawing the entire widget whenever you redraw any part of it. This eliminates the
need to remember which parts to redraw and it will have fine performance for widgets like
the ones mentioned above.

For larger and more complex widgets like texts or canvases it isn’t practical to redraw
the whole widget after each change. This can take a substantial amount of time and cause
annoying delays, particularly for operations like dragging where redisplays happen many

FIGURE 40

TABLE 40

366 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

times per second. For these widgets you should keep information in the widget record
about which parts of the widget need to be redrawn. The display procedure can then use
this information to redraw only the affected parts.

I recommend recording what to redraw in the simplest (coarsest) way that gives ade-
quate performance. Keeping redisplay information on a very fine grain is likely to add
complexity to your widgets and probably won’t improve performance noticeably over a
coarser mechanism. For example, the Tk text widget does not record what to redraw on a
character-by-character basis; instead, it keeps track of which lines on the screen need to be
redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays
only involve one or two lines, and today’s workstations are fast enough to redraw hun-
dreds of lines per second, so the widget can keep up with the user even if redraws are
occurring dozens of times a second (such as when the user is dragging one end of the
selection). Tk’s canvases optimize redisplay by keeping a rectangular bounding box that
includes all of the modified objects. If two small objects at opposite corners of the window
are modified simultaneously then the redisplay area will include the entire window, but

Table 40.1.A summary of Tk’s procedures for drawing 3-D effects.

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Fills the area ofdrawable given byx, y, width, andheight with the
background color fromborder, then draws a 3-D borderborderWidth
pixels wide around (but just inside) the rectangle.Relief specifies the 3-D
appearance of the border.

void Tk_Draw3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWidth, int relief)

Same asTk_Fill3DRectangle except only draws the border.

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Fills the area of a polygon indrawable with the background color from
border. The polygon is specified bypointPtr andnumPoints and
need not be closed. Also draws a 3-D border around the polygon.Border-
Width specifies the width of the border, measured in pixels to the left of the
polygon’s trajectory (if negative then the border is drawn on the right).
LeftRelief specifies the 3-D appearance of the border (e.g.TK_RELIE-
F_RAISED means the left side of the trajectory appears higher than the
right).

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief)

Same asTk_Fill3DPolygon, except only draws the border without fill-
ing the interior of the polygon.

40.2 Double-buffering with pixmaps 367

DRAFT (7/10/93): Distribution Restricted

this doesn’t happen very often. In more common cases, such as dragging a single small
object, the bounding box approach requires only a small fraction of the window’s area to
be redrawn.

40.2 Double-buffering with pixmaps

If you want to achieve smooth dragging and other visual effects then you should not draw
graphics directly onto the screen, because this tends to cause annoying flashes. The reason
for the flashes is that widgets usually redisplay themselves by first clearing an area to its
background color and then drawing the foreground objects. While you’re redrawing the
widget the monitor is continuously refreshing itself from display memory. Sometimes the
widget will be refreshed on the screen after it has been cleared but before the objects have
been redrawn. For this one screen refresh the widget will appear to be empty; by the time
of the next refresh you’ll have redrawn all the objects so they’ll appear again. The result is
that the objects in the widget will appear to flash off, then on. This flashing is particularly
noticeable during dynamic actions such as dragging or animation where redisplays happen
frequently.

To avoid flashing it’s best to use a technique calleddouble-buffering, where you redis-
play in two phases using an off-screen pixmap. The display procedure for the square wid-
get, shown in Figure 40.1, uses this approach. It callsXCreatePixmap to allocate a
pixmap the size of the window, then it callsTk_Fill3DRectangle twice to redraw the
widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are
copied to the screen by callingXCopyArea. With this approach the screen makes a
smooth transition from the widget’s previous state to its new state. It’s still possible for the
screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn
in either its correct old value or its correct new value.

Note: If you compile the square widget intowish you can use the dragging script from Section
36.4 to compare double-buffering with drawing directly on the screen. To make a version
of the square widget that draws directly on the screen, just delete the calls to
XCreatePixmap, XCopyArea, andXFreePixmap in DisplaySquare and
replace thepm arguments toTk_Fill3DRectangle withTkWindowId(tkwin).
Or, you can use the version of the square widget that comes with the Tk distribution; it has
a -dbl option that you can use to turn double-buffering on and off dynamically.

40.3 Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are
summarized in Table 40.1. These procedures make it easy to produce the three-dimen-
sional effects required for Motif widgets, where light and dark shadows are drawn around
objects to make them look raised or sunken.

368 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

Before using any of the procedures in Table 40.1 you must allocate aTk_3DBorder
object. ATk_3DBorder records three colors (a base color for “flat” background sur-
faces and lighter and darker colors for shadows) plus X graphics contexts for displaying
objects using those colors. Chapter 38 described how to allocateTk_3DBorders, for
example by using a configuration table entry of typeTK_CONFIG_BORDER or by calling
Tk_Get3DBorder.

Once you’ve created aTk_3DBorder you can callTk_Fill3DRectangle to
draw rectangular shapes with any of the standard reliefs:

void Tk_Fill3DRectangle(Display *display, Drawable drawable,
Tk_3DBorder border, int x, int y,int width, int

height,
int borderWidth, int relief);

Thedisplay anddrawable arguments specify the pixmap or window where the rect-
angle will be drawn.Display is usually specified asTk_Display(tkwin) where
tkwin is the window being redrawn.Drawable is usually the off-screen pixmap being
used for display, but it can also beTk_WindowId(tkwin). Border specifies the col-

void DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_Window tkwin = squarePtr->tkwin;
Pixmap pm;
squarePtr->updatePending = 0;
if (!Tk_IsMapped(tkwin)) {

return;
}
pm = XCreatePixmap(Tk_Display(tkwin), Tk_WindowId(tkwin),

Tk_Width(tkwin), Tk_Height(tkwin), Tk_Depth(tkwin));
Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->bgBorder

 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
squarePtr->borderWidth, squarePtr->relief);

Tk_Fill3DRectangle(Tk_Display(tkwin), pm, squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>size,
squarePtr->borderWidth, squarePtr->relief);

XCopyArea(Tk_Display(tkwin), pm, Tk_WindowId(tkwin),
squarePtr->copyGC, 0, 0, Tk_Width(tkwin), Tk_Height(tkwin),
0, 0);

XFreePixmap(Tk_Display(tkwin), pm);
}

Figure 40.1.The display procedure for square widgets. It first clears
squarePtr->updatePending to indicate that there is no longer an idle callback for
DisplaySquare scheduled, then it makes sure that the window is mapped (if not then there’s no
need to redisplay). It then redraws the widget in an off-screen pixmap and copies the pixmap onto
the screen when done.

40.3 Drawing procedures 369

DRAFT (7/10/93): Distribution Restricted

ors to be used for drawing the rectangle.X, y, width, height, andborderWidth
specify the geometry of the rectangle and its border, all in pixel units (see Figure 40.2).
Lastly, relief specifies the desired 3D effect, such asTK_RELIEF_RAISED or
TK_RELIEF_RIDGE.Tk_Fill3DRectangle first fills the entire area of the rectangle
with the “flat” color fromborder then it draws light and dark shadowsborderWidth
pixels wide around the edge of the rectangle to produce the effect specified byrelief.

Tk_Fill3DPolygon is similar toTk_Fill3DRectangle except that it draws a
polygon instead of a rectangle:

void Tk_Fill3DPolygon(Display *display, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints,
int borderWidth, int leftRelief);

Display, drawable, andborder all have the same meaning as forTk_Fill3-
DRectangle. PointPtr andnumPoints define the polygon’s shape (see your Xlib
documentation for information aboutXPoint structures) andborderWidth gives the
width of the border, all in pixel units.LeftRelief defines the relief of the left side of
the polygon’s trajectory relative to its right side. For example, ifleftRelief is speci-
fied asTK_RELIEF_RAISED then the left side of the trajectory will appear higher than

Figure 40.2. Figure (a) shows a call toTk_Fill3DRectangle and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows a call to
Tk_Fill3DPolygon and the resulting graphic. The reliefTK_RELIEF_RAISED specifies that
the left side of the path should appear higher than the right, and that the border should be drawn
entirely on the left side of the path ifborderWidth is positive.

(120,80)

100

70

borderWidth

(100,150)

(150,70)

(200,150)
borderWidth

Tk_Fill3DRectangle(display,
drawable,

border, 120, 80, 100, 70,
borderWidth,

TK_RELIEF_RAISED);

static XPoint points[] =
{{200,150},

{150,70}, {100,150}};
Tk_Fill3DPolygon(display,
drawable,

(a) (b)

370 Displaying Widgets

DRAFT (7/10/93): Distribution Restricted

the right side. IfleftRelief isTK_RELIEF_RIDGE orTK_RELIEF_GROOVE then
the border will be centered on the polygon’s trajectory; otherwise it will be drawn on the
left side of the polygon’s trajectory ifborderWidth is positive and on the right side if
borderWidth is negative. See Figure 40.2 for an example.

The proceduresTk_Draw3DRectangle andTk_Draw3DPolygon are similar to
Tk_Fill3DRectangle andTk_Fill3DPolygon except that they only draw the
border without filling the interior of the rectangle or polygon.

371

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 41
Destroying Widgets

This chapter describes how widgets should clean themselves up when they are destroyed.
For the most part widget destruction is fairly straightforward: it’s just a matter of freeing
all of the resources associated with the widget. However, there is one complicating factor,
which is that a widget might be in use at the time it is destroyed. This leads to a two-phase
approach to destruction where some of the cleanup may have to be delayed until the wid-
get is no longer in use. Tk’s procedures for window destruction, most of which have to do
with delayed cleanup, are summarized in Table 41.1.

41.1 Basics

Widgets can be destroyed in three different ways. First, thedestroy Tcl command can
be invoked; it destroys one or more widgets and all of their descendants in the window
hierarchy. Second, C code in the application can invokeTk_DestroyWindow, which
has the same effect as thedestroy command:

void Tk_DestroyWindow(Tk_Window tkwin);

Tk_DestroyWindow is not invoked very often but it is used, for example, to destroy a
new widget immediately if an error is encountered while configuring it (see Figure 37.1 on
page 373). The last way for a widget to be destroyed is for someone to delete its X window
directly. This does not occur very often, and is not generally a good idea, but in some cases
it may make sense for a top-level window to be deleted externally (by the window man-
ager, for example).

FIGURE 41

TABLE 41

372 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

A widget should handle all of these forms of window destruction in the same way
using a handler forDestroyNotify events. Tk makes sure that aDestroyNotify
event is generated for each window that is destroyed and doesn’t free up itsTk_Window
structure until after the handlers for the event have been invoked. When a widget receives
aDestroyNotify event it typically does four things to clean itself up:

1. It deletes the widget command for the widget by callingTcl_DeleteCommand.

2. It cancels any idle callbacks and timer handlers for the widget, such as the idle callback
to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling
Tk_FreeOptions, but widgets usually have a few resources such as graphics con-
texts that are not directly associated with configuration options.

4. It frees the widget record.

For square widgets the first two of these actions are carried out in the event procedure, and
the third and fourth actions are carried out in a separate procedure called
DestroySquare. DestroySquare is thedestroy procedure for square widgets; it is
invoked indirectly from the event procedure using the mechanism discussed in Section
41.2 below. Its code is shown in Figure 41.1.

41.2 Delayed cleanup

The most delicate aspect of widget destruction is that the widget could be in use at the
time it is destroyed; special precautions must be taken to delay most of the widget cleanup

Table 41.1.A summary of the Tk library procedures for destroying widgets and delaying object
cleanup.

void Tk_DestroyWindow(Tk_Window tkwin)
Destroystkwin and all of its descendants in the widget hierarchy.

void Tk_Preserve(ClientData clientData)
Makes sure thatclientData will not be freed until a matching call to
Tk_Release has been made.

void Tk_Release(ClientData clientData)
Cancels a previousTk_Preserve call forclientData. May cause
clientData to be freed.

void Tk_EventuallyFree(ClientData clientData Tk_FreeProc
*freeProc)
InvokesfreeProc to free upclientData unlessTk_Preserve has
been called for it; in this casefreeProc won’t be invoked until each
Tk_Preserve call has been cancelled with a call toTk_Release.

41.2 Delayed cleanup 373

DRAFT (7/10/93): Distribution Restricted

until the widget is no longer in use. For example, suppose that a dialog box.dlg contains
a button that is created with the following command:

button .dlg.quit -text Quit -command "destroy .dlg"

The purpose of this button is to destroy the dialog box. Now suppose that the user clicks
on the button with the mouse. The binding for<ButtonRelease-1> invokes the but-
ton’sinvoke widget command:

.dlg.quit invoke

Theinvoke widget command evaluates the button’s-command option as a Tcl script,
which destroys the dialog and all its descendants, including the button itself. When the
button is destroyed aDestroyNotify event is generated, which causes the button’s
event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not
safe for the event procedure to free the button’s widget record because theinvoke wid-
get command is still pending on the call stack: when the event procedure returns, control
will eventually return back to the widget command procedure, which may need to refer-
ence the widget record. If the event procedure frees the widget record then the widget
command procedure will make wild references into memory. Thus in this situation it is
important to wait until the widget command procedure completes before freeing the wid-
get record.

However, a button widget might also be deleted at a time when there is noinvoke
widget command pending (e.g. the user might click on some other button, which destroys
the entire application). In this case the cleanup must be done by the event procedure since
there won’t be any other opportunity for the widget to clean itself up. In other cases there
could be several nested procedures each of which is using the widget record, so it won’t be
safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping
track of whether an object is in use and delaying its cleanup until it is no longer being
used.Tk_Preserve is invoked to indicate that an object is in use and should not be
freed:

void Tk_Preserve(ClientData clientData);

void DestroySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOptions(configSpecs, (char *) squarePtr,

squarePtr->display, 0);
if (squarePtr->gc != None) {

Tk_FreeGC(squarePtr->display, squarePtr->gc);
}
free((char *) squarePtr);

}

Figure 41.1.The destroy procedure for square widgets.

374 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

TheclientData argument is a token for an object that might potentially be freed; typi-
cally it is the address of a widget record. For each call toTk_Preserve there must even-
tually be a call toTk_Release:

void Tk_Release(ClientData clientData);

TheclientData argument should be the same as the corresponding argument to
Tk_Preserve. Each call toTk_Release cancels a call toTk_Preserve for the
object; once all calls toTk_Preserve have been cancelled it is safe to free the object.

WhenTk_Preserve andTk_Release are being used to manage an object you
should callTk_EventuallyFree to free the object:

void Tk_EventuallyFree(ClientData clientData,
Tk_FreeProc *freeProc);

ClientData must be the same as theclientData argument used in calls to
Tk_Preserve andTk_Release, andfreeProc is a procedure that actually frees the
object.FreeProc must match the following prototype:

typedef void Tk_FreeProc(ClientData clientData);

Its clientData argument will be the same as theclientData argument to
Tk_EventuallyFree. If the object hasn’t been protected with calls toTk_Pre-
serve thenTk_EventuallyFree will invoke freeProc immediately. If Tk_Pre-
serve has been called for the object thenfreeProc won’t be invoked immediately;
instead it will be invoked later whenTk_Release is called. IfTk_Preserve has been
called multiple times thenfreeProc won’t be invoked until each of the calls to
Tk_Preserve has been cancelled by a separate call toTk_Release.

I recommend that you use these procedures in the same way as in the square widget.
Place a call toTk_Preserve at the beginning of the widget command procedure and a
call toTk_Release at the end of the widget command procedure, and be sure that you
don’t accidentally return from the widget command procedure without callingTk_Re-
lease, since this would prevent the widget from ever being freed. Then divide the wid-
get cleanup code into two parts. Put the code to delete the widget command, idle
callbacks, and timer handlers directly into the event procedure; this code can be executed
immediately without danger, and it prevents any new invocations of widget code. Put all
the code to cleanup the widget record into a separate delete procedure like
DestroySquare, and callTk_EventuallyFree from the event procedure with the
delete procedure as itsfreeProc argument.

This approach is a bit conservative but it’s simple and safe. For example, most wid-
gets have only one or two widget commands that could cause the widget to be destroyed,
such as theinvoke widget command for buttons. You could move the calls toTk_Pre-
serve andTk_Release so that they only occur around code that might destroy the
widget, such as aTcl_GlobalEval call. This will save a bit of overhead by eliminating
calls toTk_Preserve andTk_Release where they’re not needed. However,
Tk_Preserve andTk_Release are fast enough that this optimization won’t save
much time and it means you’ll constantly have to be on the lookout to add more calls to

41.2 Delayed cleanup 375

DRAFT (7/10/93): Distribution Restricted

Tk_Preserve andTk_Release if you modify the widget command procedure. If you
place the calls the beginning and end of the procedure you can make any modifications
you wish to the procedure without having to worry about issues of widget cleanup. In fact,
the square widget doesn’t need calls toTk_Preserve andTk_Release at all, but I
put them in anyway so that I won’t have to remember to add them later if I modify the
widget command procedure.

For most widgets the only place you’ll need calls toTk_Preserve andTk_Re-
lease is in the widget command procedure. However, if you invoke procedures like
Tcl_Eval anywhere else in the widget’s code then you’ll need additionalTk_Pre-
serve andTk_Release calls there too. For example, widgets like canvases and texts
implement their own event binding mechanisms in C code; these widgets must invoke
Tk_Preserve andTk_Release around the calls to event handlers.

The problem of freeing objects while they’re in use occurs in many contexts in Tk
applications. For example, it’s possible for the -command option for a button to change
the button’s-command option. This could cause the memory for the old value of the
option to be freed while it’s still being evaluated by the Tcl interpreter. To eliminate this
problem the button widget evaluates a copy of the script rather than the original. In general
whenever you make a call whose behavior isn’t completely predictable, such as a call to
Tcl_Eval and its cousins, you should think about all the objects that are in use at the
time of the call and take steps to protect them. In some simple cases making local copies
may be the simplest solution, as with the-command option; in more complex cases I’d
suggest usingTk_Preserve andTk_Release; they can be used for objects of any
sort, not just widget records.

Note: Tk_Preserve andTk_Release implement a form of short-term reference counts.
They are implemented under the assumption that objects are only in use for short periods
of time such as the duration of a particular procedure call, so that there are only a few
protected objects at any given time. You should not use them for long-term reference
counts where there might be hundreds or thousands of objects that are protected at a given
time, since they will be very slow in these cases.

376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

377

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 42
Managing the Selection

This chapter describes how to manipulate the X selection from C code. The low-level pro-
tocols for claiming the selection and transmitting it between applications are defined by
X’s Inter-Client Communications Convention Manual (ICCCM) and are very compli-
cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-
pler operations that you can perform on the selection:

• Create aselection handler, which is a callback procedure that can supply the selection
when it is owned in a particular window and retrieved with a particular target.

• Claim ownership of the selection for a particular window.

• Retrieve the selection from its current owner in a particular target form.

Each of these three operations can be performed either using Tcl scripts or by writing C
code. Chapter XXX described how to manipulate the selection with Tcl scripts and much
of that information applies here as well, such as the use of targets to specify different ways
to retrieve the selection. Tcl scripts usually just retrieve the selection; claiming ownership
and supplying the selection are rarely done from Tcl. In contrast, it’s common to create
selection handlers and claim ownership of the selection from C code but rare to retrieve
the selection. See Table 42.1 for a summary of the Tk library procedures related to the
selection.

42.1 Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more
selection handlers to supply the selection on demand when the widget owns it. Each han-

FIGURE 42

TABLE 42

378 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

dler returns the selection in a particular target form. The procedureTk_Create-
SelHandler creates a new selection handler:

void Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData,
Atom format);

Tkwin is the window from which the selection will be provided; the handler will only be
asked to supply the selection when the selection is owned bytkwin. Target specifies
the target form in which the handler can supply the selection; the handler will only be
invoked when the selection is retrieved with that target.Proc is the address of the handler
callback, andclientData is a one-word value to pass toproc. Format tells Tk how
to transmit the selection to the requestor and is usuallyXA_STRING (see the reference
documentation for other possibilities).

The callback procedure for a selection handler must match the following prototype:

typedef int Tk_SelectionProc(ClientData clientData,
int offset, char *buffer, int maxBytes);

TheclientData argument will be the same as theclientData argument passed to
Tk_CreateSelHandler; it is usually the address of a widget record.Proc should
place a null-terminated string atbuffer containing up tomaxBytes of the selection

Table 42.1.A summary of Tk’s procedures for managing the selection.

Tk_CreateSelHandler(Tk_Window tkwin, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)

Arranges forproc to be invoked whenever the selection is owned by
tkwin and is retrieved in the form given bytarget. Format specifies the
form in which Tk should transmit the selection to the requestor, and is usu-
ally XA_STRING.

Tk_DeleteSelHandler(Tk_Window tkwin, Atom target)
Removes the handler fortkwin andtarget, if one exists.

Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
ClientData clientData)

Claims ownership of the selection fortkwin and notifies the previous
owner, if any, that it has lost the selection.Proc will be invoked later when
tkwin loses the selection.

Tk_ClearSelection(Tk_Window tkwin)
Cancels any existing selection for the display containingtkwin.

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

Retrieves the selection fortkwin’s display in the format specified bytar-
get and passes it toproc in one or more pieces. ReturnsTCL_OK or
TCL_ERROR and leaves an error message ininterp->result if an error
occurs.

42.1 Selection handlers 379

DRAFT (7/10/93): Distribution Restricted

starting at byteoffset within the selection. The procedure should return a count of the
number of non-null bytes copied, which must bemaxBytes unless there are fewer than
maxBytes left in the selection. If the widget no longer has a selection (because, for
example, the user deleted the selected range of characters) the selection handler should
return -1.

Usually the entire selection will be retrieved in a single request: offset will be 0 and
maxBytes will be large enough to accommodate the entire selection. However, very
large selections will be retrieved in transfers of a few thousand bytes each. Tk will invoke
the callback several times using successively higher values ofoffset to retrieve succes-
sive portions of the selection. If the callback returns a value less thanmaxBytes it means
that the entire remainder of the selection has been returned. If its return value ismax-
Bytes it means that there may be additional information in the selection so Tk will call it
again to retrieve the next portion. You can assume thatmaxBytes will always be at least
a few thousand.

For example, Tk’s entry widgets have a widget record of typeEntry with three
fields that are used to manage the selection:

string points to a null-terminated string containing the text in the entry;

selectFirst is the index instring of the first selected byte (or -1 if nothing is
selected);

selectLast is the index of the last selected byte.

An entry will supply the selection in only one target form (STRING) so it only has a single
selection handler. The create procedure for entries contains a statement like the following
to create the selection handler, whereentryPtr is a pointer to the widget record for the
new widget:

Tk_CreateSelHandler(entryPtr->tkwin, XA_STRING,
EntryFetchSelection, (ClientData) entryPtr,
XA_STRING);

The callback for the selection handler is defined as follows:

int EntryFetchSelection(ClientData clientData, int offset,
char *buffer, int maxBytes) {

Entry *entryPtr = (Entry *) clientData;
int count;
if (entryPtr->selectFirst < 0) {

return -1;
}
count = entryPtr->selectLast + 1 - entryPtr->selectFirst

- offset;
if (count > maxBytes) {

count = maxBytes;
}
if (count <= 0) {

count = 0;
} else {

380 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

}
buffer[count] = 0;
return count;

}

If a widget wishes to supply the selection in several different target forms it should
create a selection handler for each target. When the selection is retrieved, Tk will invoke
the handler for the target specified by the retriever.

Tk automatically provides handlers for the following targets:

APPLICATION: returns the name of the application, which can be used tosend com-
mands to the application containing the selection.

MULTIPLE: used to retrieve the selection in multiple target forms simultaneously.
Refer to ICCCM documenation for details.

TARGETS: returns a list of all the targets supported by the current selection owner
(including all the targets supported by Tk).

TIMESTAMP: returns the time at which the selection was claimed by its current owner.

WINDOW_NAME: returns the path name of the window that owns the selection.

A widget can override any of these default handlers by creating a handler of its own.

42.2 Claiming the selection

The previous section showed how a widget can supply the selection to a retriever. How-
ever, before a widget will be asked to supply the selection it must first claim ownership of
the selection. This usually happens during widget commands that select something in the
widget, such as theselect widget command for entries and listboxes. To claim owner-
ship of the selection a widget should callTk_OwnSelection:

void Tk_OwnSelection(Tk_Window tkwin, Tk_LostSelProc *proc,
(ClientData) clientData);

Tk_OwnSelection will communicate with the X server to claim the selection for
tkwin; as part of this process the previous owner of the selection will be notified so that
it can deselect itself.Tkwin will remain the selection owner until either some other win-
dow claims ownership,tkwin is destroyed, orTk_ClearSelection is called. When
tkwin loses the selection Tk will invokeproc so that the widget can deselect itself and
display itself accordingly. Proc must match the following prototype:

typedef void Tk_LostSelProc(ClientData clientData);

TheclientData argument will be the same as theclientData argument to
Tk_OwnSelection; it is usually a pointer to the widget’s record.

42.3 Retrieving the selection 381

DRAFT (7/10/93): Distribution Restricted

Note: Proc will only be called if some other window claims the selection or if
Tk_ClearSelection is invoked. It will not be called if the owning widget is
destroyed.

If a widget claims the selection and then eliminates its selection (for example, the
selected text is deleted) the widget has three options. First, it can continue to service the
selection and return 0 from its selection handlers; anyone who retrieves the selection will
receive an empty string. Second, the widget can continue to service the selection and
return -1 from its selection handlers; this will return an error (“no selection”) to anyone
who attempts to retrieve it. Third, the widget can callTk_ClearSelection:

void Tk_ClearSelection(Tk_Window tkwin);

Thetkwin argument identifies a display. Tk will claim the selection away from whatever
window owned it (either in this application or any other application ontkwin’s display)
and leave the selection unclaimed, so that all attempts to retrieve it will result in errors.
This approach will have the same effect returning -1 from the selection handlers except
that the selection handlers will never be invoked at all.

42.3 Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text
into an entry, it usually does so with the “selection get” Tcl command. This section
describes how to retrieve the selection at C level, but this facility is rarely needed. The
only situation where I recommend writing C code to retrieve the selection is in cases
where the selection may be very large and a Tcl script may be noticeably slow. This might
occur in a text widget, for example, where a user might select a whole file in one window
and then copy it into another window. If the selection has hundreds of thousands of bytes
then a C implementation of the retrieval will be noticeably faster than a Tcl implementa-
tion.

To retrieve the selection from C code, invoke the procedureTk_GetSelection:

typedef int Tk_GetSelection(Tcl_Interp *interp,
Tk_Window tkwin, Atom target, Tk_GetSelProc *proc,
ClientData clientData);

Theinterp argument is used for error reporting.Tkwin specifies the window on whose
behalf the selection is being retrieved (it selects a display to use for retrieval), andtar-
get specifies the target form for the retrieval.Tk_GetSelection doesn’t return the
selection directly to its caller. Instead, it invokesproc and passes it the selection. This
makes retrieval a bit more complicated but it allows Tk to buffer data more efficiently.
Large selections will be retrieved in several pieces, with one call toproc for each piece.
Tk_GetSelection normally returnsTCL_OK to indicate that the selection was suc-
cessfully retrieved. If an error occurs then it returnsTCL_ERROR and leaves an error mes-
sage ininterp->result.

Proc must match the following prototype:

382 Managing the Selection

DRAFT (7/10/93): Distribution Restricted

typedef int Tk_GetSelProc(ClientData clientData,
Tcl_Interp *interp, char *portion);

TheclientData andinterp arguments will be the same as the corresponding argu-
ments toTk_GetSelection. Portion points to a null-terminated ASCII string con-
taining part or all of the selection. For small selections a single call will be made toproc
with the entire contents of the selection. For large selections two or more calls will be
made with successive portions of the selection.Proc should returnTCL_OK if it success-
fully processes the current portion of the selection. If it encounters an error then it should
returnTCL_ERROR and leave an error message ininterp->result; the selection
retrieval will be aborted and this same error will be returned toTk_GetSelection’s
caller.

For example, here is code that retrieves the selection in target formSTRING and
prints it on standard output:

...
if (Tk_GetSelection(interp, tkwin,

Tk_InternAtom(tkwin, "STRING"), PrintSel,
(ClientData) stdout) != TCL_OK) {

...
}
...

int PrintSel(ClientData clientData, Tcl_Interp *interp,
char *portion) {

FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;

}

The call toTk_GetSelection could be made, for example, in the widget command
procedure for a widget, wheretkwin is theTk_Window for the widget andinterp is
the interpreter in which the widget command is being processed. TheclientData argu-
ment is used to pass aFILE pointer toPrintSel. The output could be written to a dif-
ferent file by specifying a differentclientData value.

383

Copyright © 1993 Addison-Wesley Publishing Company, Inc.
All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this draft.

Chapter 43
Geometry Management

Tk provides two groups of library procedures for geometry management. The first group
of procedures implements a communication protocol between slave windows and their
geometry managers. Each widget calls Tk to provide geometry information such as the
widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-
vant geometry manager, so that the widget does not have to know which geometry man-
ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it
will manage, so that Tk will know who to notify when geometry information changes for
the slaves. The second group of procedures is used by geometry managers to place slave
windows. It includes facilities for mapping and unmapping windows and for setting their
sizes and locations. All of these procedures are summarized in Table 43.1.

43.1 Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that
this information is forwarded to any relevant geometry managers. There are three pieces
of information that the slave can provide: requested size, internal border, and grid. The
first piece of information is provided by callingTk_GeometryRequest:

void Tk_GeometryRequest(Tk_Window tkwin, int width, height);

This indicates that the ideal dimensions fortkwin arewidth andheight, both speci-
fied in pixels. Each widget should callTk_GeometryRequest once when it is created
and again whenever its preferred size changes (such as when its font changes); normally
the calls toTk_GeometryRequest are made by the widget’s configure procedure. In

FIGURE 43

TABLE 43

384 Geometry Management

DRAFT (7/10/93): Distribution Restricted

Table 43.1.A summary of Tk’s procedures for geometry management.

Tk_GeometryRequest(Tk_Window tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions for
tkwin arewidth andheight.

Tk_SetInternalBorder(Tk_Window tkwin, int width)
Informs any relevant geometry managers thattkwin has an internal border
width pixels wide and that slave windows should not be placed in this bor-
der region.

Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int widthInc, int heightInc)

Turns on gridded geometry management fortkwin’s top-level window and
specifies the grid geometry. The dimensions requested byTk_Geome-
tryRequest correspond to grid dimensions ofreqWidth and
reqHeight, andwidthInc andheightInc specify the dimensions of a
single grid cell.

Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData)

Arranges forproc to be invoked wheneverTk_GeometryRequest is
invoked fortkwin. Used by geometry managers to claim ownership of a
slave window.

int Tk_ReqHeight(Tk_Window tkwin)
Returns the height specified in the most recent call toTk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_ReqWidth(Tk_Window tkwin)
Returns the width specified in the most recent call toTk_GeometryRe-
quest for tkwin (this is a macro, not a procedure).

int Tk_InternalBorderWidth(Tk_Window tkwin)
Returns the border width specified in the most recent call toTk_Inter-
nalBorderWidth for tkwin (this is a macro, not a procedure).

Tk_MapWindow(Tk_Window tkwin)
Arranges fortkwin to be displayed on the screen whenever its ancestors are
mapped.

Tk_UnmapWindow(Tk_Window tkwin)
Preventstkwin and its descendants from appearing on the screen.

Tk_MoveWindow(Tk_Window tkwin, int x, int y)
Positionstkwin so that its upper-left pixel (including any borders) appears
at coordinatesx andy in its parent.

Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,
unsigned int width, unsigned int height)

Changestkwin’s position within its parent and also its size.
Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height)
Sets the inside dimensions oftkwin (not including its external border, if
any) towidth andheight.

43.2 Internal borders 385

DRAFT (7/10/93): Distribution Restricted

addition, geometry managers will sometimes callTk_GeometryRequest on a win-
dow’s behalf. For example, the packer resets the requested size for each master window
that it manages to match the needs of all of its slaves. This overrides the requested size set
by the widget and results in the shrink-wrap effects shown in Chapter XXX.

43.2 Internal borders

The X window system allows each window to have a border that appears just outside the
window. The official height and width of a window are the inside dimensions, which
describe the usable area of the window and don’t include the border. Unfortunately,
though, X requires the entire border of a window to be drawn with a single solid color or
stipple. To achieve the Motif three-dimensional effects, the upper and left parts of the bor-
der have to be drawn differently than the lower and right parts. This means that X borders
can’t be used for Motif widgets. Instead, Motif widgets draw their own borders, typically
using Tk procedures such asTk_Draw3DRectangle. The border for a Motif widget is
drawn around the perimeter of the widget but inside the official X area of the widget. This
kind of border is called aninternal border. Figure 43.1 shows the difference between
external and internal borders.

If a widget has an internal border then its usable area (the part that’s inside the border)
is smaller than its official X area. This complicates geometry management in two ways.
First, each widget has to include the border width (actually, twice the border width) in the
width and height that it requests viaTk_GeometryRequest. Second, if a master win-

width

height

X border

width

height

Internal border

(a) (b)

Figure 43.1.X borders and internal borders. (a) shows an official X border, which is drawn by X
outside the area of the window. (b) shows an internal border drawn by a widget, where the area
occupied by the border is part of the window’s official area. In both figureswidth andheight
are the official X dimensions of the window.

386 Geometry Management

DRAFT (7/10/93): Distribution Restricted

dow has an internal border then geometry managers should not place slave windows on
top of the border; the usable area for arranging slaves should be the area inside the border.
In order for this to happen the geometry managers must know about the presence of the
internal border. The procedureTk_SetInternalBorder is provided for this purpose:

void Tk_SetInternalBorder(Tk_Window tkwin, int width);

This tells geometry managers thattkwin has an internal border that iswidth pixels
wide and that slave widgets should not overlap the internal border. Widgets with internal
borders normally callTk_SetInternalBorder in their configure procedures at the
same time that they callTk_GeometryRequest. If a widget uses a normal X border, or
if it has an internal border but doesn’t mind slaves being placed on top of the border, then
it need not callTk_SetInternalBorder, or it can call it with awidth of 0.

43.3 Grids

Gridded geometry management was introduced in Section XXX. The goal is to allow the
user to resize a top-level window interactively, but to constrain the resizing so that the
window’s dimensions always lie on a grid. Typically this means that a particular subwin-
dow displaying fixed-width text always has a width and height that are an integral number
of characters. The window manager implements constrained resizes, but the application
must supply it with the geometry of the grid. In order for this to happen, the widget that
determines the grid geometry must callTk_SetGrid:

void Tk_SetGrid(Tk_Window tkwin, int gridWidth, int
gridHeight,

int widthInc, int heightInc);

ThegridWidth andgridHeight arguments specify the number of grid units corre-
sponding to the pixel dimensions requested in the most recent call toTk_GeometryRe-
quest. They allow the window manager to display the window’s current size in grid
units rather than pixels. ThewidthInc andheightInc arguments specify the number
of pixels in a grid unit. Tk passes all of this information on to the window manager, and it
will then constrain interactive resizes so thattkwin’s top-level window always has
dimensions that lie on a grid defined by its requested geometry, gridWidth, andgrid-
Height.

Widgets that support gridding, such as texts, normally have a-setgrid option . If
-setgrid is 0 then the widget doesn’t callTk_SetGrid; this is done if gridded resiz-
ing isn’t wanted (e.g. the widget uses a variable-width font) or if some other widget in the
top-level window is to be the one that determines the grid. If-setgrid is 1 then the
widget callsTk_SetGrid; typically this happens in the configure procedure at the same
time that other geometry-related calls are made. If the widget’s grid geometry changes (for
example, its font might change) then the widget callsTk_SetGrid again.

43.4 Geometry managers 387

DRAFT (7/10/93): Distribution Restricted

43.4 Geometry managers

The remainder of this chapter describes the Tk library procedures that are used by geome-
try managers. It is intended to provide the basic information that you need to write a new
geometry manager. This section provides an overview of the structure of a geometry man-
ager and the following sections describe the Tk library procedures.

A typical geometry manager contains four main procedures. The first procedure is a
command procedure that implements the geometry manager’s Tcl command. Typically
each geometry manager provides a single command that is used by the application
designer to provide information to the geometry manager:pack for the packer, place
for the placer, and so on. The command procedure collects information about each slave
and master window managed by the geometry manager and allocates a C structure for
each window to hold the information. For example, the packer uses a structure with two
parts. The first part is used if the window is a master; it includes information such as a list
of slaves for that master. The second part is used if the window is a slave; it includes infor-
mation such as the side against which the slave is to be packed and padding and filling
information. If a window is both a master and a slave then both parts are used. Each geom-
etry manager maintains a hash table (using Tcl’s hash table facilities) that maps from wid-
get names to the C structure for geometry management.

The second procedure for a geometry manager is itslayout procedure. This procedure
contains all of the actual geometry calculations. It uses the information in the structures
created by the command procedure, plus geometry information provided by all of the
slaves, plus information about the current dimensions of the master. The layout procedure
typically has two phases. In the first phase it scans all of the slaves for a master, computes
the ideal size for the master based on the needs of its slaves, and callsTk_Geome-
tryRequest to set the requested size of the master to the ideal size. This phase only
exists for geometry managers like the packer that reflect geometry information upwards
through the widget hierarchy. For geometry managers like the placer, the first phase is
skipped. In the second phase the layout procedure recomputes the geometries for all of the
slaves of the master.

The third procedure is arequest callback that Tk invokes whenever a slave managed
by the geometry manager callsTk_GeometryRequest. The callback arranges for the
layout procedure to be executed, as will be described below.

The final procedure is an event procedure that is invoked when a master window is
resized or when a master or slave window is destroyed. If a master window is resized then
the event procedure arranges for the layout procedure to be executed to recompute the
geometries of all of its slaves. If a master or slave window is destroyed then the event pro-
cedure deletes all the information maintained by the geometry manager for that window.
The command procedure creates event handlers that cause the event procedure to be
invoked.

The layout procedure must be invoked after each call to the command procedure, the
request callback, or the event procedure. Usually this is done with an idle callback, so that

388 Geometry Management

DRAFT (7/10/93): Distribution Restricted

the layout procedure doesn’t actually execute until all pending work is completed. Using
an idle callback can save a lot of time in situations such as the initial creation of a complex
panel. In this case the command procedure will be invoked once for each of many slave
windows, but there won’t be enough information to compute the final layout until all of
the invocations have been made for all of the slaves. If the layout procedure were invoked
immediately it would just waste time computing layouts that will be discarded almost
immediately. With the idle callback, layout is deferred until complete information is avail-
able for all of the slaves.

43.5 Claiming ownership

A geometry manager uses the procedureTk_ManageGeometry to indicate that it
wishes to manage the geometry for a given slave window:

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeometryProc *proc,
ClientData clientData);

From this point on, wheneverTk_GeometryRequest is invoked fortkwin, Tk will
invokeproc. There can be only one geometry manager for a slave at a given time, so any
previous geometry manager is cancelled. A geometry manager can also disown a slave by
callingTk_ManageGeometry with a null value forproc. Proc must match the fol-
lowing prototype:

typedef void Tk_GeometryProc(ClientData clientData,
Tk_Window tkwin);

TheclientData andtkwin arguments will be the same as those passed toTk_Man-
ageGeometry. UsuallyTk_ManageGeometry is invoked by the command procedure
for a geometry manager, and usuallyclientData is a pointer to the structure holding
the geometry manager’s information abouttkwin.

43.6 Retrieving geometry information

When a widget callsTk_GeometryRequest orTk_SetInternalBorder Tk
saves the geometry information in its data structure for the widget. The geometry manag-
er’s layout procedure can retrieve the requested dimensions of a slave with the macros
Tk_ReqWidth andTk_ReqHeight, and it can retrieve the width of a master’s internal
border with the macroTk_InternalBorderWidth. It can also retrieve the master’s
actual dimensions with theTk_Width andTk_Height macros, which were originally
described in Section 37.5.

Note: Geometry managers need not worry about the gridding information provided with the
Tk_SetGrid procedure. This information doesn’t affect geometry managers at all. It is
simply passed on to the window manager for use in controlling interactive resizes.

43.7 Mapping and setting geometry 389

DRAFT (7/10/93): Distribution Restricted

43.7 Mapping and setting geometry

A geometry manager does two things to control the placement of a slave window. First, it
determines whether the slave window is mapped or unmapped, and second, it sets the size
and location of the window.

X allows a window to exist without appearing on the screen. Such a window is called
unmapped: neither it nor any of its descendants will appear on the screen. In order for a
window to appear, it and all of its ancestors (up through the nearest top-level window)
must bemapped. All windows are initially unmapped. When a geometry manager takes
responsibility for a window it must map it by callingTk_MapWindow:

void Tk_MapWindow(Tk_Window tkwin);

Usually the geometry manager will callTk_MapWindow in its layout procedure once it
has decided where the window will appear. If a geometry manager decides not to manage
a window anymore (e.g. in the “pack forget” command) then it must unmap the win-
dow to remove it from the screen:

void Tk_UnmapWindow(Tk_Window tkwin);

Some geometry managers may temporarily unmap windows during normal operation. For
example, the packer unmaps a slave if there isn’t enough space in its master to display it; if
the master is enlarged later then the slave will be mapped again.

Tk provides three procedures that a geometry manager’s layout procedure can use to
position slave windows:

void Tk_MoveWindow(Tk_Window tkwin, int x, int y);
void Tk_ResizeWindow(Tk_Window tkwin, unsigned int width,

unsigned int height);
void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y,

unsigned int width, unsigned int height);

Tk_MoveWindow moves a window so that its upper left corner appears at the given loca-
tion in its parent;Tk_ResizeWindow sets the dimensions of a window without moving
it; andTk_MoveResize both moves a window and changes its dimensions.

The position specified toTk_MoveWindow orTk_MoveResizeWindow is a
position in the slave’s parent. However, most geometry managers allow the master for a
slave to be not only its parent but any descendant of the parent. Typically the layout proce-
dure will compute the slave’s location relative to its master; before calling
Tk_MoveWindow orTk_MoveResizeWindow it must translate these coordinates to
the coordinate system of the slave’s parent. The following code shows how to transform
coordinatesx andy from the master to the parent, assuming thatslave is the slave win-
dow andmaster is its master:

int x, y;
Tk_Window slave, master, parent, ancestor;
...
for (ancestor = master; ancestor != Tk_Parent(slave);

ancestor = Tk_Parent(ancestor)) {

390 Geometry Management

DRAFT (7/10/93): Distribution Restricted

x += Tk_X(ancestor) + Tk_Changes(ancestor)->border_width;
y += Tk_Y(ancestor) + Tk_Changes(ancestor)->border_width;

}

